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Abstract

The role of development finance institutions in low-income and emerging countries is fundamental

to provide long-term capital for investments in climate mitigation and adaptation. Nevertheless,

development finance institutions still lack sound and transparent metrics to assess their projects’

exposure to climate risks and their impact on global climate action. This information is crucial to

allow them to deliver on their mandate, to preserve their financial position and to align beneficiary

countries’ economies with the climate goals. We contribute to fill in this gap by developing a novel

climate stress-test methodology applied to the loans portfolios of overseas energy projects of two

main Chinese policy banks. We estimate their exposure to two types of shocks, i.e. climate policy

and idiosyncratic shocks, that could affect individual energy projects across regions and energy

sectors, under climate policy scenarios consistent with the 2 degrees C target. Then, we provide

several risk metrics. We find that the negative shocks are mostly concentrated on coal and oil

projects and vary across regions between 4.2% and 22% of total loans value. Given the current

leverage of Chinese policy banks, these losses could lead to severe financial distress for them, with

implications on macroeconomics and finance.
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1 Introduction

There is growing awareness among development finance institutions of the need to factor and integrate

climate-related financial risks in the financial assessment of their projects portfolios (Bonnel & Swann,

2015; European Bank for Reconstruction and Development, 2016) Indeed, it is now widely recognized

by academics and financial stakeholders that climate change could negatively impact on the value of

investments and thus on the stability of the financial system (Carney, 2015; Draghi, 2017; European

Systemic Risk Board, 2016; Battiston et al., 2017). In particular, given the complexity of the inter-

national network of financial exposures (Battiston et al., 2012, 2016b,a) and the interconnectedness

with expanding global development finance (featuring new actors, such as the Asian Infrastructure

and Investment Bank ), the introduction of climate risks consideration into financial risk metrics is

fundamental to tame potential systemic risk (Battiston et al., 2017). In addition, development banks

have also recognized the importance of assessing the opportunities generated by their projects in terms

of impact on climate action (mitigation, adaptation), and their alignment to the Paris Agreement and

the Sustainable Development Goals (SDGs). However, development finance institutions do not yet

dispose of in-house, tailored metrics to mainstream climate risk assessment across all the phases of

their projects evaluation. This gap represents a barrier for delivering on their mandate and for scal-

ing up private investments into low-carbon sectors. In particular, the energy sector is fundamental

for a smooth low-carbon transition. On the one hand, fossil fuels extraction and the of burning of

coal, natural gas, and oil for electricity and heat are the largest single source of global greenhouse

gas (GHG) emissions, equal to 35% of the total in 2010 (IPCC, 2014). In turn, the concentration of

GHG emissions in the atmosphere is the main responsible of worsening climate change. On the other

hand, investments into fossil fuels energy sectors constrain the beneficiary country’s economy on a high

carbon path and also represent a risk for investors’ financial solvability, in case of climate physical or

transition risk. Academic research has made progress in developing measures of financial portfolios’

exposure to greenhouse gases (GHG) emissions, considering investors’ market share in carbon-intensive

sectors that could become stranded assets (Monasterolo et al., 2017). There has been also progress on

modeling the macroeconomic and distributive impacts of climate policies (Monasterolo and Raberto,

2018; Dafermos et al., 2018) and on the assessment of possible amplification of climate policies’ shocks

due to feedback loops within the financial system, in presence of high leverage and recovery rate lower

than one, and the cascade effects on the Euro-Area economy (Stolbova et al., 2018). Finally, recent

research highlighted the role of network analysis to assess the impact of carbon stranded assets across

financial and economic sectors (Campiglio et al., 2017). However, targeted theoretical and empirical

applications of these insights into development finance are still missing. In order to fill in this gap, by

building on Battiston et al. (2017), we develop the first climate stress-test methodology targeted to
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development finance institutions, and we apply it to the overseas energy loans of two major Chinese

policy banks, i.e. China Development Bank (CDB) and Export-Import Bank of China (CEXIM).

With the climate stress-test, we can evaluate today the expected value of a loan exposed to a balance

sheet shock linked to the beneficiary’s business operations, and a climate policy shock led by the

introduction of a milder or tighter climate policies aimed to stay place the economies within the 2

degrees C target. Our methodology is modular and based on a simplified model but is nevertheless

able to capture the order of magnitude and sign of the shock on the project’s value. First, we compute

the exposure of banks’ portfolios to fossil fuel-based or renewable energy projects by region and year.

Second, we estimate the change in the market share of fossil fuel and renewable energy sectors by

regions under a set of climate policy scenarios consistent with the 2 degrees C target up to 2050,

using the macroeconomic trajectories provided by four Integrated Assessment Models (IAMs) of the

LIMITS project (Kriegler et al., 2013). Third, we consider a balance sheet shock on the borrower’s

side (idiosyncratic) led by operative fluctuations on companies delivering the project and affecting the

probability of default on the borrower. Fourth, we add the climate policy shocks resulting of a sudden

transition to a given climate policy scenario, in terms of relative magnitude and financial value. Each

shock is conditional to a specific information set of models, regions, energy sector and climate policy

scenario, across years. Finally, conditional to a specific model’s forecasts and climate policy scenario,

we develop and compute a project-based climate Value at Risk (VaR) to estimate the largest losses

on projects’ value. One advantage of our metrics is that they are transparent and thus replicable

and customizable. They are concise and yet allow to capture the multiple relevant dimensions for

climate-finance decision-making. In particular, they allow us to consider circularity between climate

policies and market actors’ investment decisions, and to consider situations of departure from rational

expectations. Data on the banks’ overseas energy loans worthy $228.105 billion (bn) in seven regions

in low-income and emerging countries, from 2000 to 2018, are provided by the GEGI China Energy

Finance database (Gallagher, 2017). The results have relevant implications for China’s macroeconomic

and financial performance because domestic and foreign energy investments are crucial for Chinese

economic development. In particular, foreign energy investments are part of the Chinese geopolitical

strategy and narrative on climate-finance, and imply opportunities and challenges for Chinese public

and private capital allocation. Thus, our analysis can inform the discussion on the role of China in

the low-carbon energy transition, by allowing the comparison between the Chinese energy transition

narrative and the actual investment strategy domestically vs. overseas, in particular in low-income

and emerging countries. In addition, it helps to identify potential sources of financial instability, being

the Chinese policy banks supported by the Chinese central bank and the government. The manuscript

is organized as follows. Section 2 reviews the progress in mainstreaming climate risk metrics within

development finance institutions. Section 3 describes the climate stress test methodology and its
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application to the Chinese policy banks’ portfolios of overseas energy loans. Section 4 discusses the

results of the exposures of CDB and CEXIM’s portfolios to shocks under milder and tighter climate

policy scenarios up to 2050. Section 5 concludes discussing the policy implications.

2 Review of the state of the art: progress in mainstreaming climate

risk metrics within development finance institutions

Since the COP21 UNFCCC conference held in Paris (2015), financial regulators and practitioners

started to discuss the role of metrics and methods for climate-related financial disclosure. The G20s

Financial Stability Board (FSB) introduced a Task Force for Climate-Related Financial Disclosures

(TCFD) that highlighted the need for more transparency regarding investors’ exposure to GHG emis-

sions. In particular, in its final recommendations, the FSB TCFD suggested voluntary climate risk

disclosure by financial actors as well as the introduction of tools (such as climate stress-test) to assess

risks and opportunities related to climate change (TFCD, 2017). The FSB TCFD recommendations

were recently followed by the results of the newly created European Commissions High-Level Ex-

pert Group on Sustainable Finance, which suggested the establishment of a common sustainability

taxonomy at the EU level. In addition, it recommended the implementation of the TCFD disclosure

recommendations at the EU level, also building on the positive experience of Frances Article 173 (High

Level Experts Group on Sustainable Finance , HLEG). Development banks are recognizing the impor-

tance of assessing their portfolios exposure to climate risks, their impact on climate action (mitigation

and adaptation), and their alignment with the SDGs. Six major development banks including the Eu-

ropean Bank for Reconstruction and Development, the African Development Bank (AfDB), the Asian

Development Bank (ADB), the European Investment Bank (EIB), the Inter-American Development

Bank Group (IDB) and the World Bank Group (WB) have been working together since 2011 to define

a joint climate-finance tracking methodology. In particular, they aimed to enhance joint tracking

methodologies for climate change mitigation and adaptation, at the light of the Paris Agreement (Eu-

ropean Bank for Reconstruction and Development, 2016). Further, several development banks have

introduced formal targets for the climate action component of their annual lending activity (e.g. EIB

stated a 25% minimum, the French Development Agency is aiming at 40% of its portfolio). Finally,

EIB and the Green Finance Committee (GFC) of the China Society for Finance and Banking recently

launched an official collaboration aimed at improving green finance definitions and standards with a

view to facilitating cross-border green capital flows that resulted in a Joint White Paper (European

Investment Bank and Green Finance Committee of China Society for Finance and Banking, 2017).

Development banks’ portfolios could be exposed to two main sources of climate-related risks:

• Physical risk, which derives from the location of the financed project (i.e. its exposure to losses
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from climate-led hazards) and the quality of the adaptation plan (according to the Nationally

Determined Contributions (NDCs));

• Transition risk, which derives from the technology of the sector that the project is going to

finance (e.g. carbon-intense vs. renewable energy), and by the introduction of climate policies.

Assessing the exposure of development banks portfolios to climate physical and transition risks is

fundamental to allow the financial institutions to deliver on their mandate and on their financial

solvability objectives. Indeed, development banks need to preserve their AAA rating to access more

favorable financing conditions on the markets and thus to be able to provide better lending conditions

to the beneficiary countries. Therefore, the introduction of standardized metrics and methods to

measure development banks progress towards climate action and the SDGs at the project level could

provide them actionable information through the assessment of their progress in terms of (decreased)

exposure to climate risks and (increased) impact on climate action. Regarding risk, it is crucial to

integrate climate physical and transition risk factors into current financial risk metrics and thus in

their financial risk management. Regarding impact, development banks need to assess the contribution

of their projects portfolios to climate mitigation and adaptation objectives. Furthermore, in order to

be able to capture the relevant dimensions for climate-finance decision-making, methods and metrics

need to be transparent and concise but not unidimensional.

3 Methodology and data

We build on the methodology introduced by Battiston et al. (2017) to develop a modular climate

stress-test tailored to energy portfolios and applied to two major Chinese policy banks, i.e. CDB and

CEXIM. We consider projects that are financed via loans, export credits, concessional and preferential

loans. Our methodology allows to i) compute the portion and value of the development banks portfolio

(by energy sectors, number of projects, and regions) that is exposed to climate transition risks under

milder and tighter climate policy scenarios, up to 2050, and ii) to assess the maximum losses on

portfolios’ value incurred by energy projects by region and policy scenario.

3.1 Valuation framework for loan contracts in presence of climate policy shocks

We consider a financial actor i (hereafter, the bank) endowed with a portfolio of investments in a set

of projects through loan contracts. For the point of view of credit risk, each project is represented

here as a distinct borrower j. We aim to carry out a valuation of the portfolio that takes into account

climate policy shocks. The valuation model includes three time steps, t0, t
∗, Tj , with t0 < t∗ < Tj . t0

denotes the time at which the valuation is carried out, t∗ denotes the time at which a climate policy
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shock potentially occurs, and Tj denotes the maturity of the loan contract to the borrower j. We then

denote by Aij(t0, Tj) the financial valuation at time t0 of the investment of bank i in the project j,

with maturity Tj . Accordingly, the valuation of actor i’s projects portfolio can be written as follows:

Ai(t0) =
∑
j

Ai,j(t0, Tj). (1)

In general, the valuation of a loan project j could be based on various approaches. For the sake of

simplicity, here we consider the simple approach based on the expected value of the loan, given the

information available to the bank at time t0, so that:

Ai,j(t0, Tj) = pj(t0, Tj)rjFij + (1− pj(t0, Tj)Fij = Fij (1− (1− rj) pj(t0, Tj)), (2)

where Fij is the face value of the loan (already including the time-discounting factor), rj is the recovery

rate on the loan contract1 and pj(t0, Tj) is the probability, based on the information available at time

t0, that the borrower j defaults on the loan at the maturity Tj .

In line with standard assumptions in the economic literature, we assume that the default of the

borrower j implies a legal procedure and hence a delay in the payments of the recovered assets to the

creditors. Moreover, bankruptcy costs (Greenwald et al., 1984), e.g. legal costs, loss of assets and

social capital, imply that the recovered assets can be significantly smaller in value than the face value

of the contract, as reflected by a recovery rate rj smaller than 1. In this context, a standard way of

modeling the default of borrower j at the maturity Tj , is to consider it as the result of an exogenous

stochastic shock, ηj(Tj), hitting the asset side of the borrower, and observed at time Tj .

3.1.1 Climate policy shocks

We now introduce the notion of climate policy shock. At time t∗ (intermediate between the time

of the valuation and the time of the maturity) the occurrence of a climate policy shock (e.g. the

introduction of a carbon tax or the coordination of several countries on GHG emission targets) implies

that the economy switches from a business-as-usual scenario characterized by no climate policy (B)

to a scenario P where the market shares of some economic sectors are affected. We assume that this

transition modifies the probability of default of the borrower j through changes in the market share

of the economic sector of j. This assumption will be elaborated more in detail later on in this section.

For now, we want to point out that from Equation 2 (taken as conditional to a given climate policy

1The recovery rate is a standard notion in banking that indicates the ratio of the amount recovered by the lender
upon default of the borrower, for instance after liquidating the collateral associated to the loan contract. Here we consider
the recovery rate as exogenous (thus setting the size of potential shocks in a conservative boundary), while maximum
losses are obtained with recovery rate equal to 0.
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scenario) it follows that a change in default probability implies a proportional change in the expected

value of the loan value:

∆Ai,j(t0, Tj , P ) = −Fij(1− rj)∆pj(P ), (3)

where ∆pj(P ) denotes the difference of the default probability going from scenario B to P .

3.1.2 Borrower’s default condition

In order to take into account the effect of the climate policy associated with a scenario P , we model

the total assets Aj(Tj) of the borrower j at time Tj as a stochastic variable described by the following

equation,

Ãj(Tj) = Aj(t0) + ξj(t
∗, P ) + ηj(Tj), (4)

where Aj(t0) is the value of the asset at time t0, ξj(t
∗, P ) is a shock occurring at time t∗ associated

with the climate policy, and ηj(Tj) is an idiosyncratic shock occurring at time Tj . In line with the

literature on modeling default events (Battiston et al., 2016b), we assume that the borrower defaults

at time Tj , if its net worth (called also book equity and defined as assets minus liabilities) at the

maturity Ej(Tj) becomes negative as a result of the two shocks, i.e.

Ej(Tj) = Aj(t0) + ξj(t
∗, P ) + ηj(Tj)− Lj = Ej(t0) + ξj(t

∗, P ) + ηj(Tj) < 0, (5)

where the value of the liability Lj is assumed to be independent of the policy scenario and of time,

i.e. the debt can not restructured or repurchased by the borrower.

In this formulation, for a given policy shock ξj(t
∗, P ), the conditioned default probability of the

borrower is the probability that the idiosyncratic shock ηj at time Tj is smaller than a threshold value

θj(P ), which depends on j’s liability and initial net worth value at time t0, and the magnitude of the

climate policy shock ξj on its asset side at time t∗. Formally, the default condition reads:

ηj(Tj) < θj(P ) = −(Ej(t0) + ξj(t
∗, P )). (6)

Indeed, the borrower defaults at the maturity Tj if the idiosyncratic shock is lower than the initial

equity value summed to the policy shock. In case of no policy shock, ξj equals 0 and the default

condition becomes:

η(Tj) < θj(B) = −(Ej(t0). (7)

The default probability can thus be written as:

P{ηj < θj(P )} =

∫ θj(P )

ηinf

p(ηj) dηj , (8)
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where p(ηj) is the probability distribution of the idiosyncratic shock ηj , and ηinf is the lower bound

of the support of the probability distribution. The difference in probability as a result of the policy

shock can be expressed as

∆P =

∫ θj(P )

θj(B)
p(ηj) dηj . (9)

3.1.3 Profitability and shocks on market share

We now assume that the policy shock impacts the borrower’s balance sheet, and hence the expected

value of the loan, via the transmission channel of a change in the market share of the economic sector

of the project. We define a market share shock uS,R(P,M, t∗) as follows:

uS,R(P,M, t∗) =
mS,R(P,M, t∗)−mS,R(B,M, t∗)

mS,R(B,M, t∗)
. (10)

It is intuitive that the valuation Ai,j(t0, Tj) of the loan to a borrower j can be affected by changes

in the economic performance of sector S of the geographic region R in which the borrower operates.

Indeed, from a theoretical accounting perspective, under the assumptions of 1) constant demand, 2)

constant prices and 3) constant returns to scale, a decrease x in the market share of firm i translates

in a relative decrease x in its sales and therefore in its profits.

Here, we assume that a relative change in the market share of the borrower j’s sector S within

the geographic region R, denoted by uS,R(P,M, t∗), implies a proportional relative change in the

profitability of the j’s. The assumption is justified by a body of empirical literature which has found a

strong and positive empirical relation between market-share and profitability (Szymanski et al., 1993;

Venkatraman and Prescott, 1990). Notice that since the net worth is the integral of profits over one

period of time, the relative change in net worth and in profit coincide. Therefore, it is equivalent to

assume that a relative change in net worth is proportional to the relative shock in market share:

∆Ej
Ej

= χuS,R(P,M, t∗), (11)

where χ denotes the elasticity of profitability with respect to market share. The literature has es-

timated the magnitude of the elasticity coefficient of profitability with respect to market share for

several business sectors (including banks and insurance) and it has found it to be heterogeneous and

dependent on several factors such as firm size (Venkatraman and Prescott, 1990). In principle, in our

approach, the elasticity coefficient could be estimated empirically for the specific sectors and regions

of the borrowers in the portfolio. In this work, the data to carry out this estimation was not available.

Since in this paper we aim to provide an estimation of the upper bounds of the magnitude of the shocks
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due to climate policies, we have assumed a value of χ constant and equal to 1 (typical empirical values

range between 0.2 and 0.6).

The trajectories of future values of market share are taken from the LIMITS database, considering

combinations of models M (four different Integrated Assessment Models (IAM): GCAM, WITCH,

IMAGE and REMIND) and climate policy scenarios (i.e. five scenarios characterized by a milder or

tighter GHG emissions targets, see Section 3.3 for more details). With the aim to illustrate the type of

insights that can be gained with this analysis, we now assume that the probability distribution p(ηj)

of the shocks on the borrower’s asset side follows a uniform distribution with support width δ and

mean µ, for a given model M , region and sector. In this case, the change in default probability from

Equation 9 can be expressed as:

∆P =
θj(P )− θj(B)

δ
. (12)

From Equation 6, the difference in default threshold is the change in loan value due to the climate

policy shock ξj(t
∗):

∆θj = θj(P )− θj(B) = −∆Ej = −ξj . (13)

In virtue of Equation 11, we then have

∆θj = −∆Ej = −Ej χuS,R(P,M, t∗) (14)

and the change in default probability becomes:

∆P = −Ej
δ
χ uS,R(P,M, t∗). (15)

The idiosyncratic and the climate policy shocks are assumed here to be independent, for the sake of

simplicity. In reality the two shocks could be interdependent. The effect of the climate policy shock

is to shift (either left or right) the probability distribution of the idiosyncratic shocks, with positive

or negative effects, respectively, for the default probability. Plugging Equation 15 into Equation 3, we

obtain the change in expected value of the loan, conditional to a change from scenario B to scenario

P :

∆Aij = Fij(1− rj)
Ej
δ
χ uS,R(P,M, t∗). (16)

The above equation describes, under the simplifying assumptions made at this stage, the change in

the value of the loan to borrower j, conditional to a climate policy shock from scenario B to scenario

P .
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3.1.4 Portfolio value

Summing over the projects j in the portfolio, we obtain the total change in loan value 2:

∑
j

∆Ai,j(t0, Tj , P ) =
∑
j

Fij(1− rj)
Ej
δ
χ uS,R(P,M, t∗). (17)

The selection of the parameter values for the application described in this paper is discussed in Ap-

pendix. In principle, in order to compute the probability distribution of the total change in loan value

(and from here some standard metrics of risk, such as the Value-at-Risk of the portfolio (Battiston

et al., 2017)) one needs to know: (i) the joint probability distribution of shocks ηj(T ) (Equation 8),

and (ii) the probability of occurrence of climate policy shocks. At this stage, for the dataset analysed

in the next section, none of these estimations are available. Therefore, it is not possible to apply the

standard definition of Value-at-Risk. In order to provide a preliminary notion of the largest losses

that could occur with a certain probability, we introduce a Project-level climate Value at Risk (VaR)

defined as follows.

Definition. Consider a set of project loans, with j = 1, ..., n. We define the Project-level Climate

VaR as the value (V aR) such that, conditional to the same climate policy shock for all n projects, the

fraction of projects leading to losses larger than the V aR equals the confidence level c:

|{j|∆Aij(t0, Tj , P,B) ≥ V aR}| /n = c. (18)

Note that in the following, we set c = 5%.

One interpretation of the notion of Project-level Climate VaR is that if projects mature and default

independently, then the probability of any given project to be associated with a loss larger than VaR is

smaller than c. This notion has several limitations but it provides a preliminary notion of the largest

exposure of the portfolio under specific conditions. We also consider other complementary statistics,

i.e. (i) the maximal loss (gain) from individual projects (see results in the next section), and (ii)

the total positive (negative) change in loan values, defined as the sum of loan values with positive

(negative) change in value associated to the climate policy shock. The methodology described in this

section is subject to further developments in order to relax the simplifying assumptions considered

so far. For instance, the assumptions on the relation between the shocks on energy sectors’ market

share and the borrower’s net worth, as well as those on the probability distribution of shocks on net

worth at the maturity, deserve more attention. However, already at this stage, our approach allows to

2For a description of the parameters, please refer to the Appendix
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establish the order of magnitude as well as the sign of the change in value of loans, conditional upon

changes in climate policies. To our knowledge, this is the first attempt to develop such a methodology

and fills in a major gap in the literature.

3.2 Mapping China’s overseas energy finance

We use financial flows data provided by the GEGI database, which includes information on 199 overseas

investments by two major Chinese policy banks from 2000 to the beginning of 2018, amounting to

$228.105 bn in total, across 7 world regions (63 countries). The annual investments peaked in 2009

and 2016, at $42 and $47bn respectively. In 2009, the main beneficiaries were Russia and Brazil with

$25 bn and $10 bn oil investments respectively. In 2016, the largest investments were a $12 bn gas

project in Russia and a $10 bn oil project in Brazil.

Africa
27%

Europe/Central Asia
17%

LAC
13%

South Asia
17%

Southeast Asia
25%

Africa
16%

Europe/Central Asia
29%

LAC
26%

Middle East
2%

South Asia
18%

Southeast Asia
9%

Africa

Europe/Central Asia

LAC

Middle East

South Asia

Southeast Asia

Region

Figure 1: Regional Distribution of China’s oversea energy finance. Data source: GEGI

Figure 1 shows the regional share of project numbers (inside circle) and invested amounts (outside

circle). Africa and Southeast Asia together have more than half of the total projects while Eu-

rope/Central Asia and Latin America received more than half of the invested amount. The top three

beneficiary countries are Russia, Brazil and Pakistan that account for 47% of the Chinese policy banks’

portfolios. Figure 2 shows the allocation of overseas energy loans by value, lender and energy sector,
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Transmission for Renewables
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Figure 2: CDB and CEXIM’s overseas energy portfolios Unit: million. Data source: GEGI

according to our classification based on the energy technology. We grouped coal, gas/LNG and oil as

fossil fuel sources, and combined hydro-power, solar, thermal and wind as renewable energy sources.3

The financial value of fossil fuel-based investments clearly overtake that of renewable ones: fossil fuel

based energy projects represent 51.26% of projects but 72.09% of portfolio’s value. Indeed, the average

size of an oil investment (USD 3830 million, mln) is almost 20 times as large as the average size of

a thermal investment (USD 194 mln). In Figure 3 we illustrate each region’s investment according to

their energy source. The color gradient represents the energy category from the most CO2 emissions’

intense, i.e. coal (very brown), to the least one, i.e. solar (very green). The lenders included in the

GEGI dataset are CDB, CEXIM, CDB-CEXIM co-financing, CEXIM and unknown (below 1%). We

focus on the three major funding sources, i.e. CDB (USD $127 bn), followed by CEXIM (USD $71

bn) and the co-financing between the two (USD $28 bn). Figure 2 shows that all lenders are highly

exposed to fossil energy (oil investments represent 63.38% of CDBs portfolio). Hydro-power projects

represent the highest share of renewable sources (USD $43 bn), 75% of which are funded by CEXIM.

3We excluded electric and electricity projects because they represent only 1.74% of the total amount
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Figure 3: Region and Energy Sector of China’s oversea energy finance. Source: GEGI

3.3 Sectors’ market shares trajectories subject to climate policy scenarios

With the aim to assess the exposure of CDB and CEXIM’s overseas energy finance to climate policy

shocks, we select four climate policy scenarios (from milder to tighter in terms of CO2 emissions

concentration) from the LIMITS database that are aligned to the 2 degrees C target, and we also

consider a baseline of no climate policy (i.e. the Base scenario), see Table 1. We use the LIMITS project

database (Kriegler et al., 2013) to obtain the market shares trajectories for fossil fuel and renewable

energy sectors included in the China’s overseas energy portfolios influenced by the introduction of

domestic and international climate policies (a full description of the climate policy scenarios is provided

in the Appendix). In particular, the two emissions concentration targets chosen under the so-called

milder and tighter climate policy scenarios (i.e. 500 and the 450 parts per million (ppm)), determine

the amount of CO2 to be emitted in the atmosphere by 2100 that would allow the achievement of the

2 degrees C path. These targets are associated to a probability of exceeding the 2 degrees C target

by 35-59% and 20-41% respectively (Meinshausen et al., 2009). Thus, the choice of specific emissions

concentration targets could be considered as a proxy for the stringency of the global emission cap
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imposed by potential climate treaty.

Scenario 
Name 

Scenario Class
Target before 

2020 
Target between 2020 and 2100

Base No climate policy None None

RefPol-450
Countries Fragmented, 

Immediate Action 
Lenient

450 ppm: 2.8W/m2 in 2100, 
overshoot allowed

StrPol-450
Countries Fragmented, 

Immediate Action 
Strengthened

450 ppm: 2.8W/m2 in 2100, 
overshoot allowed

RefPol-500
Countries Fragmented, 

Immediate Action 
Lenient

500 ppm: 3.2W/m2 in 2100, 
overshoot allowed

StrPol-500
Countries Fragmented, 

Immediate Action 
Strengthened

500 ppm: 3.2W/m2 in 2100, 
overshoot allowed

Table 1. Selected climate policy scenarios from the LIMITS database. Table 1 shows the four climate
policy scenarios considered (plus the Base scenario), i.e. RefPol-450, RefPol-500, StrPol-450, StrPol-
500. The emissions concentration targets (500 vs 450 ppm) provide the likelihood to achieve the 2
degrees C objective by the end of 21st Century, i.e. 70% with 450 ppm, and 50% with 500 ppm.

A change in climate policy implies a change in the sectors’ macroeconomic trajectory, and thus in

the market share of primary and secondary energy sources, and could differ in sign and magnitude.

We consider a shock occurring in the period between 2005 and 2050, affecting the market shares of

the China’s overseas energy projects sectors. The market share shocks induced by the introduction

of a climate policy are then translated in shocks in the loans’ value. Figure. 4 shows the drop in the

market share of coal energy in year 2020 and 2030 in the African region due to the change from policy

scenario baseline to a tighter climate policy scenarios (in this figure, we consider LIMITS-450 and

LIMITS-500). In this scenario, fossil fuel energy’s market share would drop while renewable energy’s

market-share would gain. Then, we compute the maximum value of losses and gains on each portfolio

for each shock, considering a specific information set composed by an IAM, a regions, a sector and a

climate policy scenario, for each five years’ time step. We obtain a range of variation of losses and

gains across projects for each model and climate policy scenario. Finally, we compute the Project-level

climate VaR to highlight the largest losses on projects that could occur associated to a specific climate

policy scenario and model.
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Figure 4: Africa: Coal Market Share in Electricity Production. Figure 4 provides an example of the
computation of the market-share for an energy sector, i.e. coal for electricity production, in a specific
region, i.e. Africa, and conditioned to the WITCH model, under three climate policy scenarios.

4 Results

In the following, we present the results of our analysis based on two classes of IAMs, i.e. CGAM

and WITCH, and for two climate policy scenarios: a milder one (i.e. RefPol500) and tighter one (i.e.

StrPol450).4 We find that both positive and negative shocks on energy projects are more pronounced

in WITCH than in CGAM, both under the RefPol-500 and tighter StrPol-450 climate policy scenarios.

In addition, the policy shocks’ transmission on the fossil/renewable energy sectors vary across models.

Table 2 reports some descriptive statistics on the shocks in each combination of models and policy

scenarios considered. The maximum positive shock always corresponds to an individual nuclear project

in Pakistan (see Conclusion for a discussion on the limitations of IAMs’ market share projections).

The sum of negative shocks ranges from about USD 50 bn to about 9 bn. In contrast, the sum of the

positive shocks ranges from about USD 22 bn to about 47 bn. Further, the VaR values range from

4For a discussion of the characteristics and differences between the two IAMs, see the Appendix.
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Table 2. Statistics of portfolio shocks in USD mln.

- USD 3878 mln to - USD 711 mln. This means that the capital to be kept aside by the Chinese

lenders in order to maintain their financial performance on individual projects varies by a factor close

to 5 across climate policy scenarios and models. In the GCAM RefPol500 scenario (Figure 5), positive

shocks are led by a single nuclear power generation project in Pakistan (light blue), followed by a solar

project in Pakistan (light green). In contrast, negative shocks in value are led by coal-based and oil

based power generation and transmission projects (in particular, Russia and China oil pipeline). By

increasing the policy severity, thus moving to scenario GCAM StrPol450, we notice an increase in the

value of the negative shocks (see Figure 6).

In contrast, the WITCH RefPol500 scenario displays an amplification in the value of shocks, in

particular the negative ones, and more homogeneous spread across energy sectors (Figure 7). Negative

shocks affect only projects in the coal and gas generation sectors, led by a gas project in Russia and

a coal project in India. In contrast, the most positive shock is led by a nuclear power generation

project in Pakistan. Nevertheless, in aggregate, positive shocks are led by the hydro-power sector.

Interestingly, also primary and secondary energy oil projects are affected by positive shocks. This

result is due to the characteristics of the IAMs used to compute the change in sectors’ market shares.

In conclusion, the increase in climate policy severity, i.e. moving to scenario WITCH StrPol450 (Figure

8), leads to an increase in the value of the negative shocks. Secondary gas, secondary and primary

energy oil are subject to both negative and positive shocks, while the largest positive shock affects

hydro-power and nuclear energy. We now consider the geographical distributions of shocks by project,

amount, policy scenario and model. In GCAM RefPol500 (Figure 9) the positive shocks overtake the

negative ones, and are located in the “India+” region (red) that includes Bangladesh, India, Nepal,

Pakistan, Sri Lanka, in the nuclear and hydro-power sectors. Positive shocks also affect hydro-power in

Africa (blue). In contrast, negative shocks are most severe in the coal power generation, in particular

in “India+”, Rest of Asia (light green) and Reforming Economies (grey, including transition countries

in Eastern Europe and in ex-URSS), which also experience negative shocks in oil and gas power
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Figure 5: Shocks on portfolios by project, GCAM, RefPol500, in USD mln. The shock values range
between a total loss of USD 9483,9 mln and approximately USD 21957,2 mln of total gains on projects.
Negative shocks are spread across projects in coal power generation, and in few oil and gas power
generation project. All the other sectors are affected by positive shocks, in particular in nuclear and
hydro-power sectors.

generation. With the increase in severity of the climate policy scenario (i.e. StrPol450), the severity

of shocks on projects’ value increases, in particular in coal power generation in China+ and in oil and

gas power generation in Reforming Economies.

In WITCH, in the RefPol500 scenario, positive shocks are associated at the nuclear project in

Pakistan, while negative shocks are associated to coal and oil power generation projects, and are

distributed across regions (China+, but also Rest of Asia, Reforming Economies and Latin America).

The relative position of the other positive and negative shocks across regions and sector don’t change

considerably from the GCAM regional scenarios (see Figures 10,11).

Moving to a tighter climate policy scenario, i.e. StrPol450 (see Figure 12) we notice a change in

the value of the shocks and in the relative position of sectors and regions. Negative shocks extend

to primary energy production via oil. However, primary oil, gas and oil power generation are both

affected by positive and negative shocks. In the secondary energy coal sector, projects affected by

negative shocks are spread across several regions, while in the secondary energy gas and oil sectors they
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Figure 6: Shocks on portfolios by project, CGAM, StrPol450 in USD mln. The shock values range
between a loss of USD 13275,3 mln and approximately USD 23742,4 mln of gains. As a difference
from Figure 5, negative shocks affect also primary and secondary oil projects, while positive shocks in
hydro-power equal those in nuclear projects in value. The relative position of solar and wind projects
remains unchanged.
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Figure 7: Shocks on portfolios by project, WITCH, REfPol500, in USD mln. The shock values range
between a total loss of USD 31343,4 mln and USD 46722,9 mln. Negative shocks are spread across
projects in coal power generation and gas power generation projects. The other sectors are affected by
positive shocks, in particular nuclear and hydro-power projects, while solar and wind projects benefit
the least.
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Figure 8: Shocks on portfolios by project, WITCH, StrPol450, in USD mln. Total value of negative
shocks reaches USD 49280 mln, while the value of positive shocks reaches USD 42953,5 mln. As a
difference from Figure 7, negative shocks affect also primary and secondary oil projects, while positive
shocks in the hydro-power equal those in nuclear projects. The relative position of solar and wind
projects remains unchanged.

Figure 9: Shocks on portfolios by region, GCAM, RefPol500, in USD mln.
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Figure 10: Shocks on portfolios by region, GCAM, StrPol450, in USD mln.

Figure 11: Shocks on portfolios by region, WITCH, RefPol500, in USD mln.
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Figure 12: Shocks on portfolios by region, WITCH, StrPol450, in USD mln.

are concentrated in Reforming Economies and “India+”. In contrast, positive shocks are associated to

the nuclear sector in Pakistan (red) and in the UK (green), while they are spread across four regions in

the hydro-power sector. Positive shocks on solar and wind renewable energy sources are concentrated

in “India+”. At this stage of the analysis we are not able to identify shocks’ general patterns across

climate policy scenarios and regions. However, the results presented so far illustrate the kind of

insights that can be gained with our methodology and could be improved with more granular data.
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5 Conclusions and policy implications

Our article provides the first development of a climate stress-test applied to the overseas energy loans

of two major Chinese policy banks, i.e. CDB and CEXIM. Our modular methodology represents

an advancement on the state of the art because it allows development banks to assess the order of

magnitude and the sign of the change in value of each loan to energy projects, conditional upon a shock

determined by a change in climate policy, using sectors market shares trajectories provided by IAMs.

Then, it allows to compute the maximum expected losses on portfolios’ value associated to specific

energy projects introducing a novel definition of a Project-level climate VaR. For development banks,

applying our climate stress methodology is important for three reasons: i) to estimate the exposure of

their projects’ portfolio to climate transition risks, ii) to assess the alignment of their portfolio with

their mandate, and iii) to derive implications on their financial solvability. This information is policy

relevant in so far it helps identify the sources of portfolios’ climate-related financial risks that could

have systemic implications, and thus to inform climate-resilient portfolios’ risk management strategies.

In the context of climate finance, previous work has also investigated the valuation of complex

contracts in the presence of shocks on the price of emission allowances and cost of technology (Chesney

et al, 2016). However, such work has not considered portfolios of contracts and the possibility of climate

policy shocks occurring in the near future. Here, we focus on the simple case of the one-time valuation

of banks’ energy loans’ contracts, while leaving the valuation of more complex contracts for future

analysis. The results of our climate stress-test show that the magnitude of losses in CDB and CEXIM

portfolios’ values is influenced by the shocks related to the timing and stringency of climate policies

aligned to the Paris Agreement. The sign and magnitude of the shock is subject to high variability,

which is conditioned to the projects location by region, the energy sub-sector (i.e. in the fossil fuel

and in the renewable energy categories), and the IAM used to estimate the change in market shares.

Overall, the losses range between 4% and 22% of the portfolios’ value. Highest losses are experienced

by projects in coal, oil and gas power generation, in particular in Asia, in transition economies and

in Latin America. In contrast, the highest gains are reported by hydro-power and for nuclear power

generation projects, the latter depending on one project located in Pakistan. Finally, the value of

climate VaR ranges from - USD 3878 mln to - USD 711 mln, implying a variation of factor close to

5 across models and climate policy scenarios. Positive and negative results are amplified using the

WITCH IAM.

Some remarks apply to this analysis, which should then be considered as preliminary for the

following reasons. First, we are working to relax the assumptions on the transmission of shocks on

sectors market share (which is now assumed to be linear), on the valuation of project loans (for which

we consider the expected value, but more sophisticated methods could be applied, e.g. the Net Present
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Value), on the distribution of the balance sheet shocks on projects (that we assume to be uniform),

as well as the introduction of a Poisson probability distribution of climate policy shocks (according

to (Bretschger & Soretz, 2018)) with the aim to refine the project-based climate VaR methodology.

Second, the high positive shocks on the value of a single nuclear power generation project in Pakistan

should rise concern in terms of validity of IAMs climate policy scenarios and their implementation in

terms of assumptions on renewable and nuclear capacity installation needed to achieve the 2 degrees

C aligned emissions targets, and on policy recommendations. Indeed, in the last decade, technological

shocks made renewable energy sources cost and productivity-competitive with fossil fuel energy sources

and nuclear. In low-income and emerging countries that struggle to build resilience against climate

change and to lift the population out of energy poverty, renewable energy sources are considered

as a fundamental investment sector by development finance institutions. Our results have policy

implications for China policy banks portfolios risk management strategies under climate transition

risk. Chinese policy banks overseas energy portfolios are highly exposed to fossil fuels investments

that could become stranded once technological improvements in renewable energy and climate policies

aligned with the Paris Agreement are introduced. In order to decrease the exposure to carbon stranded

assets, Chinese policy banks might want to rebalance their overseas energy portfolios moving from

very brown (coal and oil) to green energy sectors (solar and wind). This strategy would bring three

advantages to Chinese policy banks. First, it would help them align their overseas energy investments

to their sustainability narrative and mandate, thus driving the economic development of the beneficiary

countries into a low-carbon path. Second, by decreasing their portfolios exposure to carbon stranded

assets, they could increase their portfolios resilience to climate transition risk. Third, by rebalancing

their overseas energy portfolios toward low-carbon projects and sectors, Chinese policy banks would

contribute to preserve their financial solvability, with positive implications on Chinese macroeconomic

and financial stability, being Chinese policy banks tightly linked to the Chinese government and central

banks policies. Indeed, if we consider the current leverage of 12 (defined as assets on equity) of China

Development Bank, even an average shock of 10% on its loans portfolio could induce financial distress,

with negative repercussions both on the financial stability of the lender, which would need to go on

financial markets to access finance, and on the countries credit worthiness and sovereign debt. Finally,

given the high level of interconnectedness of Chinese financial institutions, potential risk spread and

systemic implications from the exposure of other Chinese financial institutions to Chinese policy banks

could occur.

25



References

Battiston, S., Delli Gatti, D., Gallegati, M., Greenwals, B. & Stiglitz, J. E. (2012), “Liaisons dan-

gereuses: Increasing connectivity, risk sharing, and systemic risk”, Journal of Economic Dynamics

and Control, Vol. 36(8), pp.1121–1141.

Battiston, S., Farmer, J. D., Flache, A., Garlaschelli, D., Haldane, A. G., Heesterbeek, H., Hommes,

C., Jaeger, C., May, R. & Scheffer, M. (2016a), “Complexity theory and financial regulation”,

Science, Vol. 351(6275), pp.818–819.

Battiston, S., Mandel, A., Monasterolo, I., Schuetze, F. & Visentin, G. (2017), “A Climate stress-test

of the financial system”, Nature Climate Change, Vol. 7(4), pp.283–288.

Battiston, S., Roukny, T., Stiglitz, J. E., Caldarelli, G., May, R., Roukny, T. & Stiglitz, J. E. (2016b),

“The Price of Complexity in Financial Networks”, Proceedings of National Academy of Sciences,

Vol. 113(36), pp.10031–10036.

Bretschger, L and Soretz, s (2018), “Stranded Assets: How Policy Uncertainty affects Capital,

Growth, and the Environment” CER-ETH Economics working paper series 18/288, Available from:

https://ideas.repec.org/p/eth/wpswif/18-288.html

Bonnel, A. & Swann, S. (2015), Mainstreaming Climate Action within Financial Institutions. Emerging

Practices, Technical report.

Campiglio, E., Godin, A., Kemp-Benedict, E., “Networks of stranded assets: A case for a balance

sheet approach”, AFD Research Papers.

Carney, M. (2015), “Breaking the Tragedy of the Horizon - Climate Change and Financial Stability.”

Speech given at Lloyd’s of London by the Governor of the Bank of England., Technical report.

Chesney, M., Gheyssens, J., Pana, A.C., Taschini, L. (2016), Environmental Finance and Investments,

2nd Ed, Berlin, Heidelberg, Springer

Dafermos, Y., Nikolaidi, M., & Galanis, G, (2018) “Climate change, financial stability and monetary

policy”, Ecological Economics, Vol. 152, pp.219–234, Elsevier.

Draghi, M. (2017), Response to a Letter of the Members of the European Parliament, L/MD/17/382,

Technical report.

European Bank for Reconstruction and Development (2016), Joint Report on Multilateral Develop-

ment Finance , Technical report.

26



European Investment Bank and Green Finance Committee of China Society for Finance and Banking

(2017), “The need for a common language in Green Finance. Towards a standard-neutral taxonomy

for the environmental use of proceeds”, (November), 99.

European Systemic Risk Board (2016), ESRB Advisory Scientific Committee - Report,“Too Late, Too

Sudden: Transition to a Low-Carbon Economy and Systemic Risk.”, Technical report.

Gallagher, K. (2017), China Global Energy Finance: A New Interactive Database.

Glasserman, P. & Young, H. P. (2016), “Contagion in financial networks”, Journal of Economic

Literature, Vol. 54(3), pp.779–831.

Greenwald, B., Stiglitz, J. E. & Weiss, A. (1984), “IPCC Climate Change 2014 Synthesis Report. Con-

tribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental

Panel on Climate Change”.

Greenwald, B., Stiglitz, J. E. & Weiss, A. (1984), “Informational Imperfections in the Capital Market

and Macroeconomic Fluctuations”, The American Economic Review, Vol. 74(2), pp.194–199.

High Level Experts Group on Sustainable Finance (HLEG) (2018), Financing a sustainable European

economy. Final report of the High-Level Expert Group on Sustainable Finance, Technical report.

Kriegler, E., Tavoni, M., Aboumahboub, T., Luderer, G., Calvin, K., DeMaere, G., Krey, V., Riahi,

K., Rösler, H., Schaeffer, M. & Others (2013), “What does the 2 C target imply for a global climate

agreement in 2020? The LIMITS study on Durban Platform scenarios”, Climate Change Economics,

Vol. 4(04) Special issue on implementing climate policies in the major economies: an assessment of

Durban Platform achitectures- results from the LIMITS project , pp.1-30.

Meinshausen, M., Meinshausen, N., Hare, W., Raper, S.CB, Frieler, K., Knutti, R., Frame, D.J.

& Allen, M.R. (2009),“Greenhouse-gas emission targets for limiting global warming to 2 C”, Na-

ture,Vol.458, pp.1158.

Monasterolo, I. & Raberto, M. (2018), “The EIRIN Flow-of-funds Behavioural Model of Green Fiscal

Policies and Green Sovereign Bonds”, Ecological Economics, Vol. 144, pp.228–243.

Monasterolo, I., Battiston, S., Janetos, A. & Zheng, Z. (2017), “Vulnerable yet relevant: the two

dimensions of climate-related financial disclosure”, Climatic Change, Vol. 145(3-4), pp.495–507.

Stolbova, V., Monasterolo, I. & Battiston, S. (2018), “A financial macro-network approach to climate

policy evaluation”, Ecological Economics, Vol. 149, pp.239–253.

27



Szymanski, D.M., Bharadwaj, S.G. & Varadarajan, P.R (1993) “An analysis of the market share-

profitability relationship”, The Journal of Marketing, pp.1–18, JSTOR.

TFCD (2017), Final Report: Recommendations of the Task Force on Climate Related Financial

Disclosures, Technical Report June.

Venkatraman, N. & Prescott J.E. (1990) “The market share-profitability relationship: Testing tempo-

ral stability across business cycles”, Journal of Management, Vol. 16, pp.783–805, Sage Publications

Sage CA.

Appendix. Further information on models, methodology and data

In the results section, we display the shocks on project loans’ values obtained using two of the four

IAMs considered, i.e. GCAM and WITCH. In general, GCAM provides a more detailed representation

of the agriculture and energy sectors from an engineering point of view than WITCH, but it is more

approximative in the representation of the economy and technological change. The two models differ

in terms of macroeconomic core (partial equilibrium in GCAM vs general equilibrium in WITCH),

the treatment of technological change (which is exogenous in GCAM and endogenous in WITCH),

the definition of expectations (based on recursive dynamics in GCAM and on perfect foresight in

WITCH), the details of the agricultural and energy value chains (which are highly detailed in GCAM

and less in WITCH), the representation of the GHG and aerosol emissions (GCAM considers a full

basket of greenhouse gases, precursors, and aerosols while WITCH includes CO2, CH4, N20, fluo-

rinated gases and SO2 aerosols) and of negative emissions technologies (Carbon capture storage is

considered for both electricity and hydrogen production in GCAM but only in electricity production

in WITCH). These differences in models specification affect the difference in results in the estimation

of the change in sectors market shares under the climate policy scenarios considered in our analysis.

For a comprehensive analysis of the differences between the two models, see Kriegler et al. (2013).

Selection of the parameters’ values.

The following parameters depend on the individual borrower: the face value of the loan Fij and the

initial equity level Ej the recovery rate rj and m that characterize the distribution of the idiosyncratic

shocks, according to the following relation Fij(1−rj)Ej

δ χuS,R(P,M, t∗). The initial equity level Ej of

the borrower can be observed from the balance sheet. The face value of the loan Fij is also observable

because it is negotiated between the borrower and the lender (the bank) at the moment of the granting

the loan contract.

The elasticity χ is sector specific and can be estimated from sectoral data on profitability and

market share.
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The recovery rate rj and the parameters of the distribution of shocks hitting the borrower are

more difficult to observe but could be estimated based on the historical values for borrowers in the

same project’s sector and region. Indeed, we can assume that the default of borrowers in the same

sector and in the same region (e.g. coal-based electricity producers in Poland) can be described by

parameters that are much closer than those describing borrowers in different sectors and regions.

Since these data are not available at this stage of our analysis, we have made some assumptions

on the plausible range of values that they could take.

We have set Ej/delta =1, corresponding to the assumption that the magnitude of the initial net

worth and width of the distribution of the idiosyncratic shocks are comparable. We have also set the

recovery rate as rj=0. This case corresponds to the upper bound of the loss incurred on a given loan.

Regarding the elasticity coefficient between profitability and market share we have assumed a value

of χ constant and equal to 1.

Regions classification according to the LIMITS database

In the shock estimation part, we employed economic projections under different scenarios and models

from LIMITS database. To be consistent, we adopt the ten ’super regions’ (plus a rest of world region)

as LIMITS. Here we build a correspondence between each LIMITS region and the countries covered

by the China overseas energy projects within the GEGI’s database.

• AFRICA: all models contain Sub-Saharan Africa; some models also include North African coun-

tries, others do not. This is not a big problem with GEGI because projects in North Africa have

a sum of $ 2675.03 million compared to $ 2.7 billion Africa total. The complete list of countries

in AFRICA region is as follows: Angola, Benin, Togo, Cameroon, Cote d’Ivoire, DRC, Egypt,

Equa. Guinea, Ethiopia, Gabon, Ghana, Guinea, Kenya, Malawi, Mali, Mauritius, Morocco,

Niger, Nigeria, Republic of Congo, South Africa, South Sudan, Sudan, Uganda, Zambia and

Zimbabwe.

• CHINA+: This group refers to countries of centrally-planned Asia, primarily China for LIMITS

database. In our GEGI analysis, this category includes Cambodia, Vietnam, Laos and Myanmar.

• RREST ASIA: Fiji, Indonesia, Malaysia, Papua New Guinea and Philippines.

• PAC OECD: Only Australia in our country list

• MIDDLE EAST: Iran and Jordan

• INDIA+: primarily India, it also includes Bangladesh, India, Nepal, Pakistan and Sri Lanka.
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• REF ECON: This group includes countries from the Reforming Economies of Eastern Europe

and the Former Soviet Union; primarily Russia, Belarus, Bosnia & Herzegovina, Kazakhstan,

Kyrgyzstan, Serbia, Tajikistan, Turkmenistan, Ukraine and Uzbekistan.

• LATIN AM: Countries of Latin America and the Caribbean, in this paper specifically Argentina,

Bolivia, Brazil5, Chile, Ecuador, Guyana, Peru and Venezuela.

• EUROPE: Only three recipient countries in GEGI fall into this classification: Bulgaria, Italy,

United Kingdom.

Scenarios and models from the LIMITS database

We adopt the climate policy scenarios from the LIMITS project. Base scenario is the baseline scenario

which implies no climate policy, i.e., a business as usual track. The four climate policy scenarios

chosen in this paper are constructed to line out the possible pathways for the economy in both the

short and long run. StrPol and RefPol refers to policy regimes until 2020. Until then, individual

regions follow domestic climate and technology policies that include emissions reduction targets for

the year 2020. Lenient (RefPol) or stringent policy (StrPol) regimes imply different GHG emissions

reduction targets, renewable energy shares in power generation or final energy, and renewable and

nuclear capacity installation targets for 26 world regions (see details of the Kriegler 2013 paper). In

these scenarios, a global climate mitigation regime would only emerge after a period characterised by

fragmented policies implemented at the country or regional level. 450 ppm gives a likely to very likely

(70%) chance of reaching the 2 degrees C target, while a 500 ppm gives a as likely not (50%) chance of

reaching the 2 degrees C target. More information on scenarios and models can be found in LIMITS

PROJECT website 6.

5In IMAGE, Brazil is listed alone, which could be a potential problem. However, in this analysis, model IMAGE is
not included

6http://www.feem-project.net/limits/
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