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Abstract

The diffusion of distributed energy producing systems relying on renewable sources
poses a challenge to policy-makers, grid operators, and power generating companies in
the electricity industry. One such case may be the diffusion of distributed storage sys-
tems integrated with photovoltaic units owned by households. On the one hand, they
may act as a buffer and smooth the intra-daily variation in electricity flows through
the network. On the other hand, they may increase volatility, if a large number of
distributed generators simultaneously use the network once their batteries are fully
discharged, by amplifying energy demand shocks. Under the latter hypothesis, the
system costs would grow due to a need for larger back-up and transmission capac-
ity, questioning the aggregate advantages of distributed storage systems. This work
presents a stylised agent-based model to assess the likelihood of the two alternative
effects of distributed storage systems of aggregate energy demand volatility, under dif-
ferent parametrisations of the power generation storage systems. The results suggest
that distributed storage systems reduce fluctuations, and are thus beneficial at a sys-
temic level, rejecting the volatility increase hypothesis. Further explorations through
richer simulation models of the electricity system are welcome.

Keywords: Photovoltaic energy; energy storage; volatility.
JEL: Q4; Q42

∗The paper benefited from comments from participants at the SPRU50 conference. We acknowledge
funding support from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 649186 - Project ISIGrowth
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1 Introduction

Tesla’s Powerwall has been hailed as a promising technological breakthrough in energy
storage. By providing storage opportunities through a small-sized rechargeable lithium-
ion battery that can be integrated with rooftop photovoltaic (PV) panels, the Powerwall
meets the increasing willingness of consumers to save on the electricity bill and to set
themselves free from the electricity grid, as highlighted by recent consumer surveys, e.g.
in Galassi and Madlener (2016) or Agnew and Dargusch (2016).

One key motivation for energy storage lies in the quest for load stabilization (Fairley,
2015; Fumagalli, 2016). Power load is subject to wide changes during an average day,
following the daily cycle in economic activities. The shortage of economically viable storage
technologies has for long time prevented the achievement of a smooth profile in electricity
network flows. The increasing penetration of renewable energy (RE) sources with supply
varying according to weather conditions, has further complicated matters. Because of
ramping costs and response time, most electricity generation technologies cannot promptly
respond to the unpredictable variation in RE supply. The possibility of maintaining a
reserve capacity may insure against surges of demand – which would disrupt the balance
on the grid and cause blackouts – and, less predictable drop in RE supply. The stabilizing
effect of storage is all the more needed in transmission grids that are frequently subject to
congestion, which can be induced by RE as shown by Sapio (2015) and Ardian et al. (2015).
Mitigating volatility would allow grid operators and utilities to delay the installation of
extra generation and transmission capacity. Besides the sheer costs of a larger back-up
capacity, volatile energy sources also reduce the utilization rate of conventional power
plants, which therefore operate below their maximal efficiency and require more frequent
maintenance. Energy-intensive manufacturing firms would also benefit from load-levelling
and constant frequency in their power supplies (Whittingham, 2012).

While distributed storage systems (DSS), such as Tesla’s Powerwall, may be appeal-
ing for households – once their installation costs and duration will improve (Johann and
Madlener, 2014), their system-wide stabilising effects depend on the contemporaneous deci-
sions of multiple interacting actors, and are therefore not easily predictable. The emergence
of prosumers, enabled by distributed generation facilities, is seen as a destabilizing force
for the incumbent technological paradigm (Sioshansi, 2014), which is based on centralised
power generation, established in the early decades of the 20th century (Granovetter and
McGuire, 1998).1 Agnew and Dargusch (2015) illustrate some potentially disruptive ef-
fects of PV-integrated DSS on the overall performance of the energy system. Adding to
these concerns, it is worth noting that because PV energy is not produced in off-peak
hours, when electricity prices are low, storage integrated with PV does not provide access
to the same arbitrage opportunities as storage technologies explicitly dedicated to smooth
peak loads.

It is worth mentioning that even though in our paper we explicitly refer to PV pro-
duction systems as the only RE source, we do so because our aim is to discuss a purely
theoretical point and therefore adopt a simplified representation of an abstract energy dis-
tribution system. The same methodology could be expanded to consider also other forms
of distributed and erratic energy sources, such as tidal energy or wind power, once a good
approximation of the dynamics of these sources could be available.

The present paper contributes to this debate by comparing two possible effects on load
volatility of an hypothetical large scale diffusion of distributed storage facilities integrated

1See Künneke (2008) for a comparison of the centralized and distributed generation paradigms from
the perspective of evolutionary economics.
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with renewable sources such as PV . First, in line with the existing literature on energy
storage, distributed storage systems may reduce the volatility of electricity demand because
batteries act as buffers. Supporting such expectation, DSSs decrease the users’ necessity to
access the network, whether on the supply or demand side. Thus, the aggregate intra-day
load profile would be smoother if all users had access to energy storage.

Second, and opposite, DSSs may increase demand volatility by increasing the coor-
dination of users. If the capacity of the storage systems is limited (comparable to the
consumption level), and the production from RE in different sites is positively correlated,
then a large number of distributed generators endowed with storage would simultaneously
use the network, causing large jumps in the intra-day load profile. According to this
hypothesis, we would observe that although small-scale volatility may be reduced by a
large presence of DSS’s, fewer but far larger un-balances would be faced by grid operators
when a large share of producers suddenly flood the network with energy after having fully
charged their batteries, or spike their energy request when all the stored energy is used up
(at similar times in the day, by most consumers).

With a view to enhancing forecasts and improving the design of technical infrastruc-
tures and policy initiatives, it is crucial to understand which of the two effects is most
likely to prevail (if any), and to assess the extent to which the likelihood of the two effects
varies with respect to specific features of the system. If the second effect prevails – dis-
tributed storage facilities magnify volatility – then policy makers should carefully consider
any policy intended to promote the diffusion of storage systems, for example subsidising
the installation of PV and wind generators, ensuring priority dispatch to renewables in
wholesale electricity markets, and fostering the adoption of distributed generation tech-
nologies (see e.g. the policies reviewed in Anaya and Pollitt (2015). The reason is that,
in the second scenario the diffusion of storage systems integrated with PV would entail
an increment of volatility and, consequently, the need to maintain a large amount of elec-
tricity production – possibly from polluting and costly power plants on the grid – to face
volatile load peaks.

To investigate the effect of storage systems on volatility, in the presence of RE, we
present an agent-based model featuring a large number of users equipped with electricity
production systems from renewable sources, such as PV panels, installed in private homes.
We assume that a share of the users have also a storage system coupled with their PV
facilities. Under a number of reasonable assumptions concerning the mechanics of energy
production and consumption, we analyse the effects of storage systems diffusion on the
electricity system-wide volatility, the research question of this paper. We assess the size
of the ‘safety margin’ for energy producers, that is, the share of electricity to be produced
solely for the purpose of ensuring that a sudden load peak does not disrupt the demand-
supply balance. The model provides a representation of a generic power grid comprising
consumers, small-scale energy producers from renewable sources, and storage systems so
as to assess the levels of volatility under a number of different scenarios.

The preliminary results suggest that the first effect dominates: as the adoption of
batteries increase, the system fluctuations, measured as the sum of squares of one-minute
variations in the network demand, reduces linearly. As the size of the batteries increases,
the fluctuation reduce at an increasing rate, for all adoption rates. That is, storage system
can contribute to reducing volatility of demand and, consequently, the size of the ‘safety
margin’ that energy suppliers need to guarantee on top of current demand to ensure any
short-term spike could be met without crashing the demand-supply balance. Reducing the
safety margin have obvious positive consequences both in terms of saved fuel and lower
pollution.
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The paper is structured as follows. After reviewing the existing literature on the
economics of energy storage in Section 2, Section 3 presents the agent-based model of the
electricity system. The simulation results are described and discussed in Section 4 and
Section 5 concludes.

2 Previous literature

Energy storage has long been felt as a needed technological innovation in the energy in-
dustry. Some of the main stylised facts about the liberalised electricity industry, such as
volatility clustering and spikes, are seen as coming straight from the shortage of econom-
ically viable storage facilities (Graves et al., 1999). While liberalisation has itself been a
source of volatility in an industry previously organised as a regulated monopoly, further
factors have contributed to spur volatility, such as tensions in fossil fuel producing coun-
tries (Sioshansi et al., 2009). The literature has also highlighted the potential disruptions
due to the increasing frequency and impact of climate change induced catastrophes, not-
ing how the increasing penetration of RE sources (Beaudin et al., 2010; Nyamdash and
Denny, 2013) impact on the traditional management of electricity grid balance motivating
research on the impact of energy storage technologies.

As observed in the introductory section, smoothing the short-term fluctuations of ex-
changed volumes in the electricity industry allows to save on costly reserve generation
capacity, cycling-induced maintenance, network congestion, and network upgrades. Along-
side such benefits, energy storage is seen as a powerful tool to facilitate the integration of
RE technologies in the energy system, relieving issues that slow down their diffusion, such
as high overhead costs, low predictability, or supply curtailments. Denholm and Margolis
(2007) provided one of the earliest results showing that energy storage can enable the
diffusion of solar power generation, followed by Sioshansi et al. (2009) on concentrating
solar power. Sioshansi (2010) finds that storage enhances the value of wind power plants,
using US data. Relatedly, Connolly et al. (2012) show that storage allows to improve the
penetration of wind power in the electricity market, once investment costs are sufficiently
reduced, using data on the Irish electricity system. Kaldellis and Kavadias (2009) un-
derline the potential of energy storage for minimising the energy waste related to wind
curtailments, occurring when the stability of the grid is threatened by excessive wind power
production and grid operators force curtailments. Madlener and Latz (2013) explore the
potential of compressed air storage integrated with wind turbines to balance the fluctu-
ations of wind power production. Storage, moreover, can help improve the planning of
new interconnections or substitute for them, whenever the correlations between load and
the RE source is negative (Bell et al. 2015). This is particularly valuable as congestion
sets is due to either load growth or to surges in RE supply. The strategic placement of
energy storage systems may be more viable than the construction of new transmission and
generation capacity.

The way storage technologies achieve a smoother intra-day load profile impinges upon
arbitrage, induced by within-day electricity price excursions. Assuming price-taking be-
haviour and perfect foresight, Graves et al. (1999), Figueiredo et al. (2006) and Walawalkar
et al. (2007), among others, have shown that the optimal arbitrage strategy by an agent,
running an DSS integrated with a conventional power source, involves an all-or-nothing
operation of the device. Specifically, according to the optimal strategy, the battery should
charge until full capacity when market prices are low, typically in off-peak hours; should
fully discharge at prices above the charge threshold, usually on-peak; and should remain
idle at all other times. In other words, the deployment of storage should increase the gen-

4



eration of conventional power plants at night and decrease it during the day. According
to the estimates reported in Bradbury et al. (2014), 4 hours of energy storage would be
optimal for most storage technologies, given the round-trip efficiency parameters. Such an
optimal size is anyway conditioned by the technology mix in the electricity market, by the
growth in energy demand, and by congestion patterns, which affect the gap between on-
and off-peak prices.

Along with smoother intra-day patterns in the use of the network, yielding less volatile
wholesale electricity prices (shaving peaks and filling troughs), ESS can cause a redistri-
bution of surplus from electricity producers not equipped with ESS to users who have
installed a storage facility. As noted by Sioshansi et al. (2009), the lower energy demand
off-peak implies that the decrease in consumer surplus from the higher price paid off-
peak is more than offset by an increase in consumer surplus on-peak due to a drop in
the on-peak price. Conversely for the generators who are not equipped with ESS. These
welfare-enhancing effects depend on the governance structures linking storage operators,
consumers, and power generators (Sioshansi, 2010), and have however been questioned by
Hittinger (2017), noting that while the intra-day load profile flattens out, the overall level
of energy consumption increases, possibly with growing climate-altering emissions.

Whether the above mentioned benefits materialise, and to what extent, depends on
the specificities of the storage technology in use and the associated technical parameters.
In a review of the literature, Beaudin et al. (2010) provided a thorough comparison of
several energy storage technologies (pumped hydro, compressed air, batteries, supercon-
ducting magnetic, hydrogen, flywheels, capacitors and super-capacitors) in terms of their
contribution to managing time variation in RE outputs (see Table 1 in their article). Bat-
teries were found to be most suitable for maintaining power quality and grid stability,
and to possess favourable properties, such as scalability, modularity, duration, and low
maintenance costs.

The recently introduced Tesla storage device, a lithium-ion battery which exploits
solar power, is expected to share the same advantages of other batteries and, what is
more, is characterised by a longer duration than alternative batteries. Indeed, the life
of e.g. lead-acid batteries is shorter than that of PV modules, which has been noted
by Johann and Madlener (2014) as deteriorating the net present value of investments in
storage and slowing down diffusion. The implicit tenet in the reviewed works on arbitrage,
though, was that batteries could be charged by means of controllable energy sources, such
as dispatchable power plants or pumped hydro (Nyamdash and Denny, 2013). This is
not true with Tesla Powerwall, which can be charged only when the sunlight is available.
The advantages of Tesla Powerwall in managing intermittent RE sources and mitigating
volatility may not hold if the ”optimal” arbitrage strategy cannot be implemented. The
time pattern of battery charging and discharge, constrained by the availability of sunlight,
is at the heart of our conjecture that DSS integrated with PV might make the network
flows more volatile on an infra-day time scale.

From a methodological viewpoint, previous works assessing the value of energy storage
have analyzed dynamic stochastic programming models, both for computing the optimal
arbitrage profile from the perspective of an individual investor and in order to find the
optimal dispatch in an electricity system. The only agent-based model on distributed PV
that we are aware of has been published by Palmer et al. (2015), who have studied the
diffusion of PV generation systems under different support schemes, through a simulation
model calibrated on Italian data, but does not address the fluctuation properties.
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3 The model

In order to test our hypotheses we need to evaluate the volatility of the load balance on
different hypothetical electricity distribution grids with different shares of PV and local
storage systems. For this goal we develop a simulation model replicating reliably the
behaviour of the elements affecting the variables of interests.

The model makes a number of simplifying assumptions, focussing on a fairly detailed
representation of the daily energy demand from each consumer, the amount of energy
produced from PV systems and the collective impact of distributed storage systems. This
model can be considered as a first block of a more complete model of the energy system
that, once extended as, may be used as a policy tool to be deployed to examine additional
research questions and, in particular, evaluate the effects of different policy measures.

In the simulation time scale, a time step represents a real-time minute. Agents consume
energy according to a pattern partly common to all consumers (depending on the time
of the day), partly idiosyncratic to each agent, including both systematic and random
variations. Consumers equipped with a PV system generate electricity which is used
primarily for own consumption. Non consumed PV energy is sold to the network, unless
the consumer/producer owns a dedicated, not fully charged, battery. When production is
not sufficient to fulfil energy consumption, consumers endowed with a local storage system
drain energy from their batteries, if available, before accessing the grid.

3.1 Consumers

The proposed representation is meant to simulate observed consumption patterns. The
model represents N of consumers, each following the same consumption pattern with id-
iosyncratic variations, randomly distributed, variations. The consumption pattern follows
a cyclical (daily) pattern defined for each minute of a 24 hours (1440 minutes) day.

Each consumer start their consumption pattern between 6:00 AM and 7:00 AM, ran-
domly distributed. Energy consumption for each consumer is also randomly distributed
around and average value µ.

3.2 Producers

A share of consumers, randomly extracted from the population, is assumed to be endowed
with PV systems. These agents have the same energy demand as consumers and, in
addition, produce electricity that is primarily used to satisfy the user’s demand. In cases
in which the user produces more energy than requested by current demand, the excess
energy is fed into the grid reducing the overall load.

Energy production is modelled following a simulated daily solar cycle. Each consumer
receives the same amount of light, though each PV system has a different maximum
production. The distribution of production capacity is determined randomly at the start
of the simulation (following a rule initialised by the modeller). The sunlight available for
solar energy production to all producers is also subject to random modifications simulating
varying weather conditions.

3.3 Storage systems

A share of producers, randomly chosen, is assumed to also own a local storage system,
whose size is assigned randomly at the start of the simulation run. These producers use
the energy in excess of consumption to charge their batteries, releasing electricity to the
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grid only when the batteries are filled up. In case of insufficient production, consumption
is primarily served by the energy in the storage system, resorting to the grid when the
batteries are emptied.

3.4 Formal description

The energy consumption of user i, Ci,t, is determined as a variation from the previous
minute energy consumption level approximating a new consumption level CTi,t:

Ci,t = αCi,t−1 + CTi,t (1)

where α is the measure of the inertia of consumption; and CTi,t is a random value drawn
from a normally distributed function centred on a cyclical variable:

CTi,t ∼ norm(CCi,t, V arC) (2)

The cyclical variable is computed as:

CCi,t = Cmin +
(sin(π + 2π (t+si)

1440 ) + 1) × (Cmax − Cmin)

2
(3)

where π is trigonometric constant 3.1416; Cmin is the minimum consumption level; Cmax
the maximum consumption level; si is the user specific time shift representing the individ-
ual consumer consumption habits, expressed as a temporal differences in starting a daily
cycle. This value is defined at the start of a simulation run drawing a random value from
a uniform distribution between smin and smax:

si ∼ U(smin, smax) (4)

Energy net demand from the grid of each user depends on the amount of energy pro-
duced, if any, and of the discharge/recharge of the battery, if available. Such demand is
positive when production and the flow from the sun and from the battery is not sufficient
meet consumption. While batteries are charging (meaning production matches and sur-
passes consumption, and batteries not yet fully charged) net demand is null. Finally, net
demand is negative when the energy produced surpasses consumption and batteries are
fully charged. In this latter case the user is selling energy to the grid, increasing global
supply. Formally:

Ei,t = Ci,t − Si,t + ∆i,t (5)

where Si,t indicates production from the PV plants and ∆i,t the flow of energy from the
batteries (∆i,t < 0) or to the batteries (∆i,t > 0). In short, the net demand is positive
when batteries and production are not sufficient to cover energy consumption, and negative
when production exceeds consumption and battery charging.

Energy production is computed as the product of the plant capacity (PVi) times avail-
able sunlight (Lt), equal for all users:

Si,t = PVi × Lt (6)

where production capacity is determined at the start of a simulation run with a random
value drawn from a uniform distribution:

PVi = PV max × U(PV u, 1) (7)
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Sunlight is computed as a cyclical variable representing the time of the day measured
in minutes (Tt, computed as the remainder of the ratio t

1440) times one minus the clouds
intensity (Zt). The sunlight is zero during night and follows the upper section of a sinus
function during the day from 6:00AM to 18:00PM:

Lt =

{
sin
(
2π(Tt−360)

1440

)
× (1 − Zt), if 360 < Tt < 1080

0, otherwise
(8)

The clouds intensity is computed as an inertial random walk:

Zt = αzZt−1 + (1 − αz) × U(0; 1) × Zmax (9)

where U(0; 1) returns a uniformly distributed random value between 0 and 1; αz is the
inertia of weather conditions; and Zmax is the maximal reduction of sunlight. The variable
is constrained to take only values in the range [0; Zmax].

The battery charge variation depends on: current energy consumption Ci,t, the current
production from PV Si,t, the past level of the battery charge Bi,t−1, and the maximum
capacity of the battery, Bmax

i .

∆i,t =


0 , if Bmax

i = 0

min (Si,t − Ci,t;B
max
i −Bi,t−1) , if Ci,t < Si,t

−min (Bi,t−1;Ci,t − Si,t) , if Ci,t > Si,t

(10)

The level of the battery charge is computed as:

Bi,t = Bi,t−1 + ∆i,t (11)

The excess energy produced and not used for consumption nor to charge batteries, is
fed into the grid, and computed as:

Gi,t = max(0;Si,t − Ci,t − ∆i,t) (12)

As results of the model, we collect all the values for every variable from individual
users and the aggregate variables (computed as the sums over every user). Moreover, we
compute an index of demand volatility as a 1-minute volatility of net load variation of
energy from the grid:

Vt = (
N∑
i=1

Ei,t −
N∑
i

Ei,t−1)
2 (13)

3.5 Main parameters

The model is meant to simulate a complex electricity grid and compute the aggregate
properties concerning the load pattern in relation to different assumptions on the number
agents (share of producers and share of storage systems) and their characteristics (e.g.
capacity of PV plants and size of storage systems). To simplify the implementation we
control many of the properties of the simulated system by means of statistical distribu-
tions defined with few parameters. All the features of the model may, however, be easily
calibrated using data from real-world systems, possibly modified to include the outcome
of specific policies, for example in terms of share of observed consumers purchasing PV
production systems.
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Par. Description Value(s)

N Total number of consumers 10,000
Cmin Minimum regular consumption 0.05 Kw
Cmax Maximum regular consumption 2 Kw
V arc Variance of individual random variation per minute 1 Kw
– Share of users owning a PV energy production system 100%
PV max Maximum PV capacity (0 means user has no PV) 2 Kw
– Share of producers owning a storage system* 10% - 90%
Bmax Maximum capacity storage systems (0 means user has no storage)* 30 - 90 Kw
smin Max. anticipation time shift -120
smax Max postponement time shift 120
α Autocorrelation random individual energy consumption 0.7
αz Autocorrelation random common weather 0.7
Zmax Maximum PV production reduction due to weather 0.5
PV u Maximum rate of underutilization of the PV production 0.5

Table 1: Parameter values tested in the results. Parameters marked with * are explored
with multiple values.

Table 1 reports the main parameters used in the simulation runs presented in the next
section (4).

Notice that the configuration tested assumes a system where all consumers are also
producers. This assumption is adopted to test the hypothesis under extreme conditions,
since any configuration with a smaller percentage of producers will necessarily reduce the
volatility, and hence the probability that local storage system increase the volatility of the
system.

4 Results

To illustrate the model properties and main result we use an arbitrary setting made of
plausible values for the parameters (Table 1). We begin with the presentation of results
for individual members of a grid, consumers and producers, then we show the aggregate
properties of the whole system and, finally, we assess the effects of storage systems on the
load volatility.

4.1 Individual users

We start by showing the shape of the consumption pattern assumed for individual con-
sumers. Figure 1 presents the energy consumption Ci,t for two sample consumers over
two days (2880 minutes), and the population average consumption (black line). Every
consumer follows the same overall pattern, shifted by a random time gap, and is affected
by random noise.2

Consumers are also producers, endowed with PV plants with heterogeneous productiv-
ity levels (in the current initialisation we assume that all consumers have a PV plant, to
study a case of extremely high volatility). Productivity is also influenced by the weather

2The model may be extended to adapt the consumption pattern may to reflect different typologies of
consumers.
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Figure 1: Energy consumption: population average and sample of two users.

conditions (common to all consumers), which also affects total production. Figure 2 re-
ports the amount of energy produced by two sample producers Si,t, in two days.

1 720 1440 2160 2880

-0

0.4435

0.8871

1.331

1.774

Figure 2: Energy produced by two sample producers.

A consumer owning a PV power plant may reduce the energy demand from the grid,
and show a negative load when the production is higher than the consumption. Under
those conditions some of the electricity produced by the consumers is returned to the grid.
Figure 3 reports the series of energy consumption Ci,t and the net demand from the grid
for a consumer/producer Ei,t.

The horizontal line reports the null load. When the load touches this line the consumer
neither draws energy from the grid nor feed in any electricity, that is the user has zero
consumption or consumes exactly the same amount of electricity produced by the PV
panels. When the load is above this level the consumer is using some energy from the
grid, while when it is below the consumer is selling electricity back into the grid.

For those users endowed with a storage system, the energy produced but not used
charges the batteries (if they are not fully charged). When, instead, the consumer demand
is higher than supply, and they own a storage system, they use energy from the batteries.
Figure 4 reports the charge level of the batteries Bi,t for two sample producers endowed
with a local storage system. Batteries are charged at a rate proportional to the efficiency
of the PV system. When they reach the maximum level the excess energy is fed into the
grid. When production terminates because of lack of sunlight the energy stored in the
batteries is used and, finally, the user resorts to consume energy from the grid when the
batteries are flat.

For producers owning a storage system the energy is not directly sold, but it is used,
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Energy consumption

Figure 3: Consumer/producer. Energy consumption and net load on the grid.

1 720 1440 2160 2880
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Figure 4: Battery level for two sample storage systems.

firstly, to fill up the battery. When the production falls below consumption needs, the
energy is drawn from the batteries, and only when they are exhausted the consumer resort
to the grid. Figure 5 reports the two series of consumption and net load for one user, as
in the previous figure, together with charge level of the battery.

4.2 An empirical case study

The simulation results shown above, generated with arbitrary technical values, offer a
qualitatively realistic representation of energy systems. Figure 6 reports, for comparison,
the actual graph concerning the outcome of PV system coupled with a local storage3.

The data are obtained for a system located in Rome during early April over two mostly
sunny days. The production system has the maximum potential of 3 Kw/hour and the
storage can contain up to 4 Kw. The data concern a two-day period beginning just before
dawn with batteries completely flat. Consumption is initially relying on the grid but,
at about 8:00 AM, the sun starts producing sufficient energy to meet consumption and
charging the battery.

At about noon the batteries are filled up and the production begins to be sold to the
grid. When the sun stops to power the PV panels the battery replace direct production.
The high consumption level reduces rapidly the battery charge in early afternoon. During
the night the low consumption is not sufficient to exhaust completely the stored energy.

3The figure reports the snapshot of the online control panel of a system by Sonnen, a German company
providing storage systems integrated with PV plants.
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2.019
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Figure 5: Consumer/producer. Energy consumption, net load on the grid and charge level
of the batteries (last series measured on a different scale).

Figure 6: Real-world data for a two-day period of a 3Kw/hour PV system coupled with a
4 Kw storage. Snapshot of the online control panel by Sonnen.

The second day begins with some energy in the batteries, so that the sunny day man-
ages to complete the recharge well before noon. However, higher energy consumption
(around 4:00 PM and during the evening) depletes the battery just after midnight.

The qualitative comparison between the simulated data and the empirical case study
suggests that our model replicates qualitatively the overall pattern of the energy con-
sumption, PV production and effects of a storage system. While more precise data may
be obtained, using them would require a far heavier computational effort to manage large
datasets instead of simple functional representations as in the present version of the sim-
ulation model. For our purposes, assessing an overall property of the system, we consider
the similarity between virtual and empirical data sufficient to consider the model a valid
representation of real world systems.

4.3 Aggregate results: The impact of batteries on load volatility

Before testing the main hypotheses of our paper, we discuss the aggregate properties
generated at system level by the interaction among the heterogeneous users in the model.
Figure 7 reports all the relevant aggregate series for a single day, made of 1440 minutes.

The series labelled as Tot. Consumption indicates the total consumption by energy
users (

∑
iCi,t), represented conventionally according to a sinus dynamics, starting at
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Batteries
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Distributed production
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Figure 7: Time series for aggregate variables during a simulated day.

3:00am. The series Network Demand reports the electricity demanded from the network
(
∑

iEi,t), i.e. the net load. In the early hours of the simulations, during the night, there
is no PV production, and thus all consumption must be satisfied by network electricity.

At 6:00am the simulated dawn allows for PV energy production to start (series Dis-
tributed Production (

∑
i Si,t))), so that demand from the grid falls below total energy

consumption. The PV production in excess of demand starts filling households’ batteries,
whose level begins to grow (series Batteries (

∑
iBi,t)).

As more users fill up their batteries, the excess of energy is sold on the network (series
Energy sold (

∑
iGi,t)), generating consequently a negative network demand. As consump-

tion grows, although sunlight peaks, PV energy production fails to meet demand, and the
energy stored in batteries is used up, thereby decreasing their levels. Eventually, batter-
ies are depleted, PV production falls, and network demand quickly catches up with total
consumption.

The main goal of this preliminary simulation exercise consists in evaluating the impact
of distributed storage systems on electricity demand volatility, to assess whether the dif-
fusion of batteries would increase or decrease the size of the safety margin necessary for
centralised producers to guarantee the overall network energy balance. For this purpose,
we replicated the results varying the two parameters describing the extent of storage sys-
tems through their adoption and capacity: the share of consumers that own batteries, and
the size of the average battery. With respect to the share of PV producers that also own
batteries to store electricity we considered five values: from 10% to 90%, with intervals
of 20%. With respect to battery capacity, we also considered 5 values: from 10KW to
90KW. Figure 8 reports on the vertical axis the level of volatility measured as the sums
of squares of 1-minute variations in network demand cumulated over two full days.

On the horizontal axis the graph reports the size of the batteries, and the different
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Figure 8: Total network energy demand variation over 1 minute, cumulated over all users
and all time steps for a two-day simulation run.

lines connect the points referring to the same share of producers owning a storage system.
The results show that the volatility falls with increased diffusion levels of storage

systems among PV energy producers and for increasing size of such storage systems.
Thus, the model suggests that the volatility mitigation hypothesis is correct, rejecting
the alternative hypothesis that storage systems may increase volatility in the presence of
coordinated behaviour.

5 Discussion and conclusion

This work has presented preliminary results of an agent-based model developed to study
the effects of energy storage systems integrated with distributed power generation. The
results show that increasing the size of storage systems and their share in the population
of energy users, reduces the aggregate electricity volatility of the network load, measured
by the cumulated 1-minute variations in demand of energy from the grid.

Policy implications are therefore quite straightforward in this case, suggesting that
there are only gains, at the systemic level, from improving battery technology, and pro-
moting their diffusion among users.

The model presented in this paper is designed to be used for more ambitious goals and
in a broader set of experiments. Concerning the issue of volatility of demand, it would
be interesting to study specific forms of volatility of particular interest to default energy
suppliers. For example, it may be possible that a low overall volatility may still include
particular conditions with large jumps that may potentially concern central producers.

The model can be extended to include a more detailed representation of real-world
energy systems. For example, the model may encompass heterogeneous producers, with
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differentiated costs and reaction times to changes in demand, in order to assess the best
organisation of supply with respect to the rapidly changing needs of a demand sector in
which the share of self-consumption is rapidly expanding. Moreover, the model may be
extended to include virtual energy suppliers, who trade electricity obtained by coordinating
actions of large consumers and fringe producers (reference). Within the shifting landscape
of the markets for energy, constantly affected by technological innovations and policy
initiatives aiming to mitigate the environmental impact of energy production, our model
can be used as the foundation of a comprehensive tool assisting decision makers, such
as policy-makers, regulatory authorities, network designers, and individual actors of the
energy industry.

Besides the specific application discussed in this work, the model can also be calibrated
with data from a specific system, and used to test alternative policy measures such as the
effect of incentives, expected costs, load imbalances, and any other measure relevant to
determine a regulatory framework able to best exploit the technological opportunities in
the field of energy production and distribution.

15



References

Agnew, S. and Dargusch, P. (2015), “Effect of residential solar and storage on central-
ized electricity supply systems”, Nature Climate Change, 5(4), pp. 315–318.

Agnew, S. and Dargusch, P. (2016), “Consumer preferences for household-level battery
energy storage”, Renewable and Sustainable Energy Reviews.

Anaya, K. and Pollitt, M. (2015), “Integrating distributed generation: Regulation and
trends in three leading countries”, Energy Policy , 85, pp. 475–486.

Ardian, F., Concettini, S. and Creti, A. (2015), “Intermittent renewable generation
and network congestion: an empirical analysis of Italian Power Market”, Energy
Economics, 55.

Beaudin, M., Zareipour, H., Schellenberglabe, A. and Rosehart, W. (2010),
“Energy storage for mitigating the variability of renewable electricity sources: An
updated review”, Energy for Sustainable Development , 14(4), pp. 302–314.

Bradbury, K., Pratson, L. and Patiño Echeverri, D. (2014), “Economic viability
of energy storage systems based on price arbitrage potential in real-time US electricity
markets”, Applied Energy , 114, pp. 512–519.

Connolly, D., Lund, H., Mathiesen, B., Pican, E. and Leahy, M. (2012), “The
technical and economic implications of integrating fluctuating renewable energy using
energy storage”, Renewable Energy , 43, pp. 47–60.

Denholm, P. and Margolis, R. (2007), “Evaluating the limits of solar photovoltaics
(PV) in electric power systems utilizing energy storage and other enabling technolo-
gies”, Energy Policy , 35(9), pp. 4424–4433.

Fairley, P. (2015), “Energy storage: Power revolution.”, Nature, 526(7575), pp. S102–
S104.

Figueiredo, F., Flynn, P. and Cabral, E. (2006), “The economics of energy storage
in 14 deregulated power markets”, Energy Studies Review , 14(2), p. 131.

Fumagalli, E. (2016), “Energy investment: The many lives of energy storage”, Nature
Energy , (1), p. 16096.

Galassi, V. and Madlener, R. (2016), “Consumer and value creation in the utility
of the future: An experiment in the Italian solar PV market”, 1st AIEE Energy
Symposium on Current and Future Challenges to Energy Security.

Granovetter, M. and McGuire, P. (1998), “The making of an industry: electricity
in the United States”, The Sociological Review , 46(S1), pp. 147–173.

Graves, F., Jenkin, T. and Murphy, D. (1999), “Opportunities for electricity storage
in deregulating markets”, The Electricity Journal , 12(8), pp. 46–56.

Hittinger, E. (2017), “Distributed generation: Residential storage comes at a cost”,
Nature Energy , 2, p. 17006.

Johann, A. and Madlener, R. (2014), “Profitability of energy storage for raising self-
consumption of solar power: Analysis of different household types in Germany”, En-
ergy Procedia, 61, pp. 2206–2210.

16



Kaldellis, Z. D., J.K. and Kavadias, K. (2009), “Techno-economic comparison of
energy storage systems for island autonomous electrical networks”, Renewable and
Sustainable Energy Reviews, 13(2), pp. 378–392.

Künneke, R. (2008), “Institutional reform and technological practice: the case of elec-
tricity”, Industrial and corporate change, 17(2), pp. 233–265.

Madlener, R. and Latz, J. (2013), “Economics of centralized and decentralized com-
pressed air energy storage for enhanced grid integration of wind power”, Energy Pol-
icy , (101), pp. 299–309.

Nyamdash, B. and Denny, E. (2013), “The impact of electricity storage on wholesale
electricity prices”, Energy Policy , 58, pp. 6–16.

Palmer, J., Sorda, G. and Madlener, R. (2015), “Modeling the diffusion of residential
photovoltaic systems in italy: An agent-based simulation”, Technological Forecasting
and Social Change, 99, pp. 106–131.

Sapio, A. (2015), “The effects of renewables in space and time: A regime switching model
of the Italian power price”, Energy Policy , 85, pp. 487–499.

Sioshansi, R. (2010), “Welfare impacts of electricity storage and the implications of
ownership structure”, The Energy Journal , pp. 173–198.

Sioshansi, R. (2014), “When energy storage reduces social welfare”, Energy Economics,
41, pp. 106–116.

Sioshansi, R., Denholm, P., Jenkin, T. and Weiss, J. (2009), “Estimating the value
of electricity storage in PJM: Arbitrage and some welfare effects”, Energy Economics,
31(2), pp. 269–277.

Walawalkar, R., Apt, J. and Mancini, R. (2007), “Economics of electric energy
storage for energy arbitrage and regulation in New York”, Energy Policy , 35(4), pp.
2558–2568.

Whittingham, M. (2012), “History, evolution, and future status of energy storage”,
Proceedings of the IEEE , (100), pp. 1518–1534.

17


