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Abstract 

This paper provides an empirical investigation of the role played by selected characteristics of 
the policy mix in inducing innovation in energy efficiency technologies. An original dataset 
covering 23 OECD countries over the period 1990-2010 combines the full set of policies in the 
energy efficiency domain for the residential sector with data on patents applied over the same 
period in this specific technological sector. The econometric results suggest that when the policy 
mix is characterised by a more balanced use in demand-pull and technology-push instruments, 
its positive effects on eco-innovation tend to be greater. Moreover, a more comprehensive policy 
mix is shown to be able to enhance innovation activities for the generation of new energy 
efficient technologies. However, the simple addition of an indiscriminate number of 
simultaneous policy instruments may reduce policy mix effectiveness. Finally, our findings 
confirm previous evidence on the importance of policy spillover effects, and suggests that 
country-pair policy similarity may represent an important aspect to be accounted for in policy 
mix design. 
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1. Introduction 

The analysis of eco-innovation in recent years is attracting growing attention both at academic 

and policy level. A definition of what eco-innovation is has been widely discussed in recent years 

and the most complete one is provided by Kemp and Pearson (2007, p.7): “[e]co-innovation is 

the production, assimilation or exploitation of a product, production process, service or 

management or business method that is novel to the organization (developing or adopting it) 

and which results, throughout its life cycle, in a reduction of environmental risk, pollution and 

other negative impacts of resources use (including energy use) compared to relevant 

alternatives”.1 Given this broad definition, the current debate has adopted distinguished 

analytical perspectives in order to better understand the dynamics, characteristics and 

determinants of eco-innovation (Arundel and Kemp, 2009; Beise and Rennings, 2005; Berkhout, 

2011; Cainelli and Mazzanti, 2013; Kemp and Oltra, 2011; Marin, 2014; Markard et al., 2012; 

OECD, 2011; van den Bergh et al., 2007; Wagner, 2007). These studies suggest that a variety of 

factors drive eco-innovation, but also highlight the primary role played by public policies 

(environmental regulation, energy and technology policies) that are increasingly used to foster 

the rate of introduction and diffusion of new environmental technologies to meet sustainable 

development goals (del Río, 2009a; Horbach et al., 2012; Johnstone et al., 2010; Mowery et al., 

2010; Newell, 2010). 

The bulk of previous literature has focused its attention on the impact of single (though 

different) policy instruments mainly belonging to the two broad categories of demand-pull and 

technology-push instruments (Bergek and Berggren, 2014; Horbach et al., 2012; Kemp and 

Pontoglio, 2011; Peters et al., 2012; Rennings, 2000). Recent empirical contributions 

demonstrate that these instruments have differentiated impacts on the diverse types of eco-

innovation activities such as those related to the introduction of incremental or radical 

innovations (Nemet, 2009) or those associated with technological exploitation or exploration 

activities (Costantini et al., 2015; Hoppmann et al., 2013). However, there is growing interest in 

understanding the role played by the different combinations of the available policy instruments 

in stimulating and directing technical change. In particular, the literature has recently focused on 

the role of policy mix, a concept that at its basics considers the combination of policies into a 

composite set, but that also includes the processes through which different instruments emerge 

and interact (Flanagan et al., 2011; Rogge and Reichardt, 2015). 

Empirical studies that focus on the effects of policy mixes on innovation (Guerzoni and Raiteri, 

2015) and in particular on eco-innovation performances (Cantner et al., 2016; Reichardt and 

Rogge, 2016; Uyarra et al.,2016) represent a limited though rapidly expanding area of research. 

                                                      
1 Given the wide range of different forms of innovations included in the definition by Kemp and Pearson (2007), in 
this paper the terms eco-innovation, green technologies, environmental innovation are used interchangeably where 
not explicitly defined in the text. 
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Following these contributions, here we propose a quantitative analysis based on a large sample 

of OECD countries that aims to measure some significant characteristics of the policy mix and 

quantify their impact on eco-innovation activities through panel data econometrics. In 

particular, we first focus our attention on the balance in the policy mix between demand-pull 

and technology-push instruments and, then, we try to evaluate the role played by policy mix 

comprehensiveness. Finally, considering that policy decisions adopted by other countries are 

likely to influence domestic innovation performance (Peters et al., 2012; Dechezleprêtre and 

Glachant, 2014), we aim to address if and to what extent the similarity between domestic and 

foreign policy mixes fosters countries’ eco-innovation performances.  

The empirical analysis focuses on the case of Energy Efficiency (EE) technologies, which 

appears to be appropriate with respect to our research purposes, since a large number of 

different policies in several countries aims to enhance energy efficiency in the residential sector, 

especially by fostering the generation and diffusion of new energy-efficient technologies 

(Sovacool, 2009; IEA, 2015). In particular, in the examined case the full range of demand-pull, 

technology-push and systemic instruments are usually adopted, allowing us to investigate how 

and to what extent, beside the role played by distinct instruments, the characteristics of the 

policy mix have an influence on eco-innovation performance.2 

The remainder of the paper is organized as follows. Section 2 provides a literature review on 

the role of public policies in fostering eco-innovation and on the analysis of policy mix. Section 3 

introduces the research case and the research hypotheses to be tested, whereas Section 4 

defines the dataset, the operationalization of policy variables and the econometric strategy. 

Section 5 presents and discuss the econometric results and, finally, Section 6 summarizes the 

main insights emerging from the study, highlights the policy implications and outlines possible 

further research lines. 

 

2. Background literature 

A large number of economic studies have been devoted to identifying the determinants of eco-

innovations (see, for instance, del Rìo, 2009a; Foxon, 2003; Horbach, 2008; OECD, 2011). The 

analysis of eco-innovation drivers has constituted an empirical issue that has given rise to a 

flourishing strand of literature in which the role of public policies has been found to be of 

prominent importance (Bergek and Berggren, 2014; Haščič et al., 2009; Johnstone et al., 2010, 

2012; Schmidt et al., 2012). In more detail, the literature has identified different types of policy 

instruments that have been classified in several categories which mainly refer to technology-

push, demand-pull and systemic instruments (e.g., del Rìo et al., 2010; Kemp, 1997; Rennings, 

2000; Wieczorek and Hekkert, 2012). 

 

                                                      
2 A previous work by Costantini et al. (2014a) applied to the EE domain is limited to an analysis of the direct policy-
inducement effects on the dynamics of EE technologies without addressing the specific role played by the different 
policy mix characteristics which is the actual focus and contribution of this paper. 
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2.1 The role of distinct policies 

The empirical literature investigating the role of different types of instruments in shaping eco-

innovation activities is extensive. Earlier studies, mainly due to limited data availability, use a 

measure of the environmental regulatory stringency proxied by the expenditures certified by 

firms for implementing pollution control activities rather than specific information on the policy 

instrument adopted.3 For instance, the pioneering contribution by Lanjouw and Mody (1996) 

examines the relationship between patenting activity in broadly defined environmental 

technologies and environmental regulation stringency measured by pollution abatement and 

control expenditures (PACE) paid by firms in three industrialized countries, Germany, Japan and 

the United States, and selected developing countries. Different reactions for patenting activity 

are highlighted, suggesting that eco-innovation performance positively responds to PACE in 

advanced economies, whereas the largest part of innovation activities in developing countries is 

explained by the need to adapt imported technologies to local conditions. 

In the same vein, Brunnermeier and Cohen (2003) also investigate the relationship between 

PACE as a proxy of environmental policy stringency and environmental patents by analysing a 

dataset of 146 US manufacturing industries from 1983 to 1992. In line with the results by 

Lanjouw and Mody (1996), they find significant (though not extensive) evidence that pollution 

abatement expenditures are also positively correlated with successful environmental patent 

applications in the case of a single country and sector-based analysis. 

Subsequent empirical analyses adopt more focused perspectives by selecting specific 

environmental technology sectors on the one hand, and by using variables specifically linked to 

different policy instruments on the other. One pioneering empirical exercise in this perspective 

is provided by Popp (2002). The author observes, over the period 1970-1994 in the US, that 

higher energy prices determined by higher energy taxation encouraged patenting activities in 

energy-efficient technologies by firms. In the same vein, Crabb and Johnson (2007) analyse if 

and to what extent fuel taxes applied in the US in the period 1980-1999 have influenced the 

pattern of patent applications in automotive energy-efficient technologies sector, confirming the 

positive effect found by Popp (2002). 

Starting from the seminal work by Kemp (1997), more recent contributions analyse the 

different impacts on eco-innovation performance played by distinguished types of policy 

instruments, providing new knowledge on the mechanisms that explain how environmental 

policies determine a positive impulse on innovation activities. An example is given by Popp 

(2006) that analyses patenting activity in air pollution control equipment in three countries, 

Germany, Japan and the US, combined with selected environmental protection policies. The main 

                                                      
3 The definition and measurement of environmental regulatory stringency are arguments for an extended debate. As 
clearly described by Brunel and Levinson (2013), the definition of stringency level is strictly correlated with data 
availability and can be broadly defined as the ambition level of the adopted policy in terms of environmental targets.  
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empirical findings are that command-and-control schemes seem to be less effective than 

market-based instruments in spurring eco-innovation and that inventors respond to 

environmental regulatory pressure in their own country, but not to foreign environmental 

regulations. 

By considering only process innovation distinguished in end-of-pipe technologies 

(interpreted as mature innovation) and integrated cleaner production technologies (as less 

mature innovation), Frondel et al. (2007), using a firm-level dataset based on a OECD survey 

performed in 2003 for seven countries (Canada, France, Germany, Hungary, Japan, Norway and 

the US), find that only command and control mechanisms play an important role in stimulating 

end-of-pipeline solutions and a minimal role for integrated cleaner production technologies, 

whereas market-based options are ineffective in encouraging eco-innovation. In the same way, 

Demirel and Kesidou (2011) analyse the impact of environmental public policies, measured as 

binary variables reflecting the existence or not of environmental standards (interpreted as a 

command and control instrument) or environmental taxes (interpreted as a market-based 

instrument), on three eco-innovation domains (End-of-Pipeline Pollution Control Technologies, 

Integrated Cleaner Production Technologies and Environmental R&D) in the UK, finding that the 

three domains respond differently to different policy tools and that environmental standards 

mainly affect End-of-Pipeline Pollution Control Technologies, whereas environmental taxes are 

neutral to eco-innovation actions. 

The contribution by Johnstone et al. (2010) constitutes a significant step forward in the 

direction of generalizing these results since the whole range of renewable energy technologies 

measured by patent applications is combined with the whole range of public policy tools in that 

domain, in a comprehensive sample of OECD countries for a long time series (1978-2003). The 

authors conclude that different policy instruments have heterogeneous effects on different 

renewable energy technologies depending on their degree of technological maturity and that, 

ceteris paribus, feed-in tariffs and public R&D expenditures in renewable energies are the tools 

that foster the most eco-innovation performances. 

The diversification of impacts on eco-innovation activities related to the specific policy 

instrument adopted is also analysed from the perspective of the classification of environmental 

regulation tools in the two broad categories of demand-pull and technology-push instruments 

(Horbach et al., 2012; Peters et al., 2012). Both kinds of instruments have been found to be 

important in spurring innovation in environmental technologies, with differentiated effects 

according to the specific technological domain analysed such as, for instance, in the biofuels 

(Costantini et al., 2015), solar photovoltaic module (Hoppmann et al., 2013) and wind power 

(Nemet, 2009) sectors. As a general result, demand-pull policies seem to benefit mature 

technologies to a larger extent than less mature technologies, whereas technology-push policies 
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turn out to be necessary in stimulating eco-innovation activities in less mature technologies. 

With regard to the specific role played by voluntary instruments, previous contributions 

mainly address the firm level adoption of an environmental management scheme (EMS) as a 

potential driver of process and product innovation. Although the empirical investigations are 

carried out on different datasets for different years and countries, they find that EMS and other 

managerial activities voluntarily adopted to reduce environmental impacts have a positive 

influence on both environmental-friendly process and product innovations (Rennings et al., 

2006; Wagner, 2008). 

In addition to the role of national regulation, there are few empirical contributions that focus 

their attention on the existence of cross-country policy spillover effects that may positively 

influence eco-innovation performances. For instance, Lanjouw and Mody (1996) observe that 

strict regulations on vehicle emissions in the US spurred innovation in foreign countries such as 

Germany and Japan. On the contrary, Popp (2006) finds that in air pollution control equipment 

innovations developed in the same three countries, inventors only respond to environmental 

regulatory pressure in their own country, whereas they are not influenced by foreign 

environmental regulations. 

By considering chlorine-free technology in the pulp and paper industry, Popp et al. (2011) 

find a positive correlation between foreign regulation and domestic innovation by investigating 

patent applications in seven OECD countries over the period 1985-2003. Dekker et al. (2012) 

also highlight the positive role played by foreign policies and investigate patenting decisions by 

firms in SO2 abatement technologies. Based on a panel dataset of 15 countries in the period 

1970–1997, the authors show that domestic innovation is affected by both domestic policies and 

by the international regulatory framework, here measured as the entry into force of 

international environmental agreements such as the Helsinki and Oslo protocol as part of the 

Convention on Long-Range Transboundary Air Pollution. 

The contribution by Dechezleprêtre and Glachant (2014) adds new insights to the role played 

by foreign policies promoting wind power for eco-innovation performance, considering a panel 

of 28 OECD countries over the period 1994-2005. In the analysed case, the authors find that eco-

innovation performance, measured by patent applications, increases in response to both 

domestic and foreign policies. Moreover, they find that domestic innovation activity is 

influenced by only foreign demand-pull policies, whereas it is neutral with regard to foreign 

technology-push ones. In parallel, Peters et al. (2012) find similar effects for foreign demand-

pull policies in the photovoltaic energy sector by looking at the patenting activity of 15 OECD 

countries over the period 1978-2005. 

 

2.2 The role of policy mix 
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Although there is an extensive literature evidencing the role of distinct public policies in shaping 

eco-innovation activities, there is still space for investigating how the combination of different 

policy instruments influences the generation and diffusion of new environmental technologies. 

The number of contributions that examine the interaction effects between different policies in 

the context of eco-innovation studies is in fact limited, though this line of research is gaining 

momentum (see, for instance, Cantner et al., 2016). These studies build on and apply the notion 

of policy mix which originates from economic policy and political science literatures and has 

been subsequently adopted in environmental policy and innovation literatures (see Flanagan et 

al., 2011 for a review of the origins of this notion). 

At the basic level, studies regarding policy mix are concerned with a combination of policies 

into a composite set and with an analysis of how their interactions shape their effectiveness 

(Cunningham et al., 2013), although more refined conceptualizations of policy mix also include 

the dynamic processes through which different instruments emerge and interact (Flanagan et 

al., 2011; Rogge and Reichardt, 2015). 

In the context of environmental policy studies, Gunningham and Sinclair (1999) highlight that 

in order to achieve an environmental goal, a number of different instruments are frequently 

combined into policy mixes. However, they suggest that nothing guarantees that any 

combination of instruments is superior to a single instrument approach. On the contrary, 

different combinations of instruments can have a variety of effects which may range from 

complementarity to counter-productivity. More specifically, Sorrel and Sijm (2003) note that, 

though positive combinations between an Emission Trading System (ETS) and other 

instruments are theoretically possible, in practice the net result of adding instruments to ETS 

may result in a mix of overlapping and conflicting instruments without any overall coherence. In 

this respect, del Río (2006, 2009b) provides a thorough analysis of the interactions between ETS 

and renewable electricity support schemes, suggesting that these may lead to both synergies and 

conflicts. Moreover, these tend to be context-specific since they depend on the design features of 

the instruments in specific countries. For instance, in the case of Spain, del Río (2009b) finds 

that policy interactions may lead to conflicts with regard to some specific criteria (e.g., consumer 

costs) and synergies with regard to others (e.g., dynamic efficiency). Different cases of 

combinations of policy instruments for environment protection have been analysed by the OECD 

(2007) which identifies cases in which the use of instruments in combination helped reach 

environmental goals, but also a number of cases in which the use of overlapping instruments 

reduces the economic efficiency of the mix. Where these problems have been identified, they are 

partly attributed to insufficient (both ex-ante and ex-post) analyses of the impacts of a given mix 

of policy instruments. Finally, Lehman (2012), when analysing economic studies on the use of 

policy mix for pollution control, identifies two main rationales for combining different policies. 
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First, a policy mix may reduce multiple reinforcing market failures such as pollution 

externalities and technological spillovers; second, it can be used when high transaction costs are 

associated with the implementation of single policies. Hence, within the analytical framework 

developed by Lehman (2012), if both rationales do not hold, the use of a single policy will be 

sufficient to address pollution control problems. 

In parallel, the notion of policy mix has been applied and developed by innovation policy 

scholars. Early studies attempt to investigate the complementarity mechanisms as well as the 

substitution effects among coexisting instruments (see, for instance, Branscomb and Florida, 

1998; Smith, 1994). Subsequently, the use of the policy mix concept in innovation policy studies 

has grown considerably although it has been convincingly claimed that the term is under-

conceptualised (Flanagan et al., 2011). Many studies still adopt heterogeneous, and sometimes 

ambiguous, terminology with regard to policy mix characteristics in particular that describe the 

nature of a policy mix and may be capable of shaping the effectiveness of the policy mix in 

delivering policy goals (Rogge and Reichardt, 2015). For instance, the OECD (2010) focuses its 

analysis on the balance and coherence of the policy mix. With the former characteristic, the OECD 

(2010) specifically refers to the balance within the mix between demand-pull and technology-

push instruments. With the latter, it refers to the extent implemented policies act to support 

rather than detract from one another. 

In the more specific context of analyses of policy mix designed to promote eco-innovation, 

Rogge and Reichardt (2015) make an effort to clarify the meaning of the main characteristics of 

policy mix identified in previous literature, both with regard to policy processes and 

instruments combinations. In particular, regarding the instrument mix, they refer to its 

consistency when positive interactions between different instruments take place and to its 

comprehensiveness, defined as the degree to which the instrument mix addresses all the three 

policy purposes of technology-push, demand-pull and systemic concerns. These characteristics 

are expected to impact the performance of policy mix, though in a differentiated, context-specific 

way, depending on the specific and unique nature of each innovation system (Borras and 

Edquist, 2013). 

Empirical studies that focus on the effects of policy mixes on innovation and in particular on 

eco-innovation performances represent a limited though rapidly expanding area of research. 

With regard to the analysis of policy mix in relation to “general” innovation activities, Guerzoni 

and Raiteri (2015) study the impact of different policy tools and their interactions on business 

innovation investment in 27 EU member states, and including Norway and Switzerland, using 

data from the Innobarometer survey (2006-2008). In particular, by applying the propensity 

score matching method, they study the effects on firm expenditures on all innovative activities of 

three innovation policies: tax credits, subsidies and public procurement. When analysing the 
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interactions between these tools, they find that the increase in total innovation expenditure due 

to the contextual use of both technology-push and demand-pull instruments is higher than the 

sum of the effects of the three policies considered in isolation. Considering these results, they 

stress the importance of evaluating innovation policies by looking at the overall policy mix and 

how its effectiveness is positively affected by the balance between demand-pull and technology-

push policies. 

With regard to specific contributions that analyse the policy mix and its characteristics in 

relation to eco-innovation, Reichardt and Rogge (2016) develop a qualitative company case 

study to analyse the innovation impact of the characteristics of the policy mix in the German off-

shore wind sector. They find that in the examined case, the consistency and credibility of the 

policy mix have been vital sources of innovation incentives. In parallel, Cantner et al. (2016) 

provide an analysis of how the different instruments in the policy mix and its consistency 

influence inventive activities in renewable energy technologies in Germany. By focusing on the 

size and structure of co-inventor networks in wind power and photovoltaic sectors, they find a 

positive influence of both demand-pull and technology-push instruments on inventive activities, 

though the former effects are technology-dependent. Moreover, their analysis shows that in the 

examined case, the interaction between technology-push and demand-pull instruments is 

positive, suggesting complementarity between the two types of instruments. Positive interaction 

effects are also found between demand-pull and systemic instruments, though only in the case of 

wind power technologies, suggesting in this specific case the existence of an overall consistency 

in the policy mix. 

Finally, Uyarra et al. (2016) adopt a policy mix framework to analyse UK policies for low 

carbon innovation support. Their study combines document analysis with 35 in-depth 

interviews, with a specific focus on SMEs operating in the low carbon and environmental 

sectors. They observe that coherence and consistency concerns are emerging in the UK as a 

consequence of an increasingly crowded policy landscape and limited coordination between 

multiple agencies involved at different governance levels. Moreover, their interviews reveal the 

importance of policy stability, communication and credibility in fostering innovation activities 

by firms. 

Following this empirical literature, our paper aims to provide a contribution in this direction 

by presenting an econometric analysis based on a large set of country level data. This provides 

us with new empirical evidence on the impact of selected policy mix characteristics on eco-

innovation performance in the case of energy efficiency technologies in the residential sector 

which has not been analysed by previous innovation literature on policy mix. In so doing, we 

also try to make a first attempt to include the role played by foreign policies in the analysis, an 

aspect that has been rarely addressed and which has not yet been considered by the literature 
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that examines the relationships between policy mix and eco-innovation. 

 

3. Research case and hypotheses 

The case of energy-efficient technologies in the residential sector appears to be worth 

investigating with a view to better understanding how the characteristics of policy mix influence 

eco-innovation for several reasons. The first one is that a large number of different policies in 

several countries aims to enhance energy efficiency in the residential sector. In particular, the 

large discrepancy between those agents making decisions about energy efficiency improvements 

(mainly firms) and those effectively paying the energy bills (mainly consumers) requires the 

implementation of multiple policies in order to influence the whole range of agents involved in 

achieving energy saving targets (Sovacool, 2009). For this purpose, the policy instruments 

implemented in this sector can be grouped into three main pillars. The first two refer to the 

broad categories of demand-pull and technology-push instruments with the latter aiming to 

increase the supply of new scientific and technological knowledge and the former aiming to 

enlarge the size of the market demand for new technologies (del Rìo et al., 2010). The third pillar 

considers systemic instruments, i.e. tools that target systemic problems and thus aims to 

influence the overall functioning of the system (Smits and Kuhlman, 2004; Wieczorek and 

Hekkert, 2012). In particular, within this broad category, the so-called soft instruments (e.g., 

information and education or voluntary approaches) aim to enhance the level of consumers’ 

awareness with regard to the potential benefits deriving from the adoption of specific 

environmental friendly behaviours (Carraro and Leveque, 2013; Jänicke and Weidner, 2012; 

Kemp, 1997). 

The second source of interest rests in the pivotal role that new energy-efficient technologies 

play in achieving energy efficiency gains in the residential sector (IEA, 2015). The evolution of 

technologies in this sector has been fast in recent years, especially in OECD countries. If we look 

at the number of patents, those related to energy efficiency in the residential sector have 

increased by an annual average rate of about 12% in the period 1990-2010 in OECD countries. 

Public investments in R&D activities specifically oriented towards energy efficiency in the 

building sector also faced a substantial increase with an average annual growth rate in the same 

period of about 15%.4 Nonetheless, according to the IEA (2015), further efforts are needed to 

boost energy efficiency especially in the building sector, recognized as one of the major potential 

contributors to the transition towards a low-carbon economy. In this respect, public policies and 

the type of combinations of different instruments forming the policy mix are recognized as 

critical elements for encouraging innovative investments and the full engagement of the multiple 

actors involved in the energy efficiency system of innovation.  

                                                      
4 For details on data used for these statistics on patents and public R&D investments, see Section 4. 
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Following the reviewed literature, in the empirical investigation we have chosen a selection 

of issues to be analysed considering the specific features of the technological domain under 

scrutiny and data availability. This adaptive strategy implies several caveats that will be 

explicitly discussed in the description of the operationalization of policy mix characteristics into 

indicators and in the interpretation of results. 

According to previous contributions and considering available information on the set of 

policy instruments related to energy efficiency objectives, we identify two characteristics of the 

policy mix that can be measured and whose specific impact on eco-innovation performance can 

be evaluated. 

First, as suggested by the OECD (2010), we focus our attention on the balance in the policy 

mix between demand-pull and technology-push instruments. This issue appears to be of 

particular relevance in the context of eco-innovation studies where it has been claimed that the 

public financing of demand-pull measures aimed at stimulating the deployment of green 

technologies in the energy sector (mainly renewables) has been disproportionate compared 

with investments in R&D policies (Frondel et al., 2008; Laleman and Albrecht, 2014; Nemet, 

2009). On the one hand, an unbalanced policy mix in favour of demand-pull instruments could 

lead to a reduced variety of alternative technologies and possible lock-in effects in inferior 

technologies (Costantini and Crespi, 2013; Hoppmann et al., 2013). On the other hand, a 

disproportionate use of technology-push instruments could slow down expectations on demand 

expansion, partly reducing private investments in new technologies. Moreover, the 

implementation of a balanced policy mix in terms of demand-pull and technology-push 

instruments may help to establish a reliable policy framework that can foster innovation efforts 

towards both exploitation and exploration activities (Costantini et al., 2015). To give an example 

for the specific domain under scrutiny, if a national government decides to impose a high energy 

tax on electricity consumption without increasing R&D expenditure on energy efficiency, the 

final result of such an unbalanced policy mix will be an increase in energy prices without a 

parallel enhancement of domestic technological capacities in energy efficiency. This may lead to 

increasing technology imports from abroad without a positive effect on the domestic capacity of 

generating the new technologies needed by consumers. On the contrary, an unbalanced policy 

mix mostly favouring technology-push policies without a proper set of demand-pull instruments 

influencing consumers’ behaviour may convince innovative investors that there is an inadequate 

internal demand for new technologies, reducing profit expectation and thus lowering the 

propensity to innovate. Based on these considerations, we hypothesize that: 

 

HP1. A more balanced policy mix in terms of demand-pull and technology-push instruments, 

ceteris paribus, has a positive influence on innovation performance in EE technologies. 
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Second, we try to evaluate the role played by the comprehensiveness of the policy mix that can 

be defined, as already recalled in the literature review, as the contextual use of different types of 

instruments encompassing the three pillars of technology-push, demand-pull and systemic 

policies (Rogge and Reichart, 2015). The inherent complexity of a policy framework aimed at 

enhancing energy efficiency suggests that a large range of instruments has to be implemented at 

the same time, acting both on the demand and the supply side, activating different response 

mechanisms within the system ranging from purely economic decisions taken by market 

operators to changes in consumption behaviours by individuals (Sovacool, 2009). As previously 

recalled, in the case of energy consumption in the residential sector where the final users do not 

always correspond to agents paying the energy bill, the adoption of a market-based mechanism 

that aims to increase the price of energy may not necessary lead to a reduction in energy 

consumption. More responsible energy saving behaviour is likely to occur if additional 

complementary information programmes are settled, leading to increased demand for energy-

efficient technologies. Hence, in this context, the use of soft instruments such as voluntary and 

non-coercive measures in addition to standard market-based and command and control tools 

can help to control for side effects or reinforce the efficacy of the main instruments employed 

(del Río and Howlett, 2013). Finally, other systemic instruments that aim to target institutional, 

infrastructural, policy strategy and agent interaction issues are expected to play a role in 

fostering eco-innovation in the analysed sector (Smits and Kuhlman, 2004; Wieczorek and 

Hekkert, 2012) such as, for instance, the creation of a national energy efficiency agency or the 

construction of a specific technological platform on energy saving technologies. Building on this 

discussion, we therefore formulate the following research hypothesis: 

 

HP2a. A more comprehensive policy mix positively influences innovation performance in EE 

technologies. 

 

However, the positive impact of comprehensiveness may be somewhat reduced if an excessive 

number of different policies is settled. Considering the different types of interactions between 

different instruments evidenced by the literature (Bressers and O’Toole, 2005; Gunningham and 

Sinclair, 1999), Flaganan et al. (2011) conclude that the simple accumulation of theoretically 

complementary instruments at some point may lead to negative or contradictory interactions. 

Detrimental uncertainties can emerge when a disproportionate variety of policy tools is jointly 

implemented. An example in the field of energy efficiency may be the adoption of several norms 

directed toward the same goal that contain contradictory elements, as occurred in selected 

countries such as Italy and Spain when implementing the EU Directive on building labelling 

codes and standards. Another example is related to those cases in which the adoption of 
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incremental norms over time led economic operators to consider labelling codes as not 

compulsory, thus reducing the strength of the dissuasive power of administrative controls and 

limiting the demand increase of energy-efficient goods for building and construction activities. 

More generally, the existence of increasing costs in order to be compliant with different 

regulatory frameworks and the dispersion of economic resources across a myriad of public 

interventions may increase agents’ perceptions of conflicts in the final objectives of different 

tools, resulting in reduced credibility in the overall policy strategy. Hence, as stressed by 

Arundel and Kemp (2009), when the portfolio of policy tools is too diversified, it may also act as 

a barrier to innovation. This prompts us to formulate the following research hypothesis: 

 

HP2b. There is a limit beyond which an excessive variety of policy tools shaping policy mix 

comprehensiveness display a negative effect on innovation performance in EE technologies. 

 

Finally, decisions and policy strategies adopted by other countries are likely to influence 

internal innovation performance. The pure policy spillover effects analysed by recent 

contributions on green technologies consist in the influence played by foreign policies on 

domestic innovation performance. On the one hand, foreign demand-pull policies may increase 

the potential market for such technologies, thus positively influencing domestic investments in 

eco-innovation activities (Peters et al., 2012). On the other, technology-push foreign policies are 

expected to generate international knowledge spillovers that can benefit domestic technological 

capabilities (Dechezleprêtre and Glachant, 2014). 

Together with the direct influence exerted by foreign policies on domestic innovative 

activities, the cross-country coordination of policies may provide a positive impulse for 

innovation performance. This argument may be grounded in more general contributions on the 

potential benefits of environmental policy international coordination (Jacobs, 2012). For 

instance, Bovenberg and Cnossen (2012) show that the international coordination of 

environmental policies aimed not only at setting common targets, but also at adopting similar 

policy schemes across countries, substantially increases the cost-effective achievement of the 

targets. More specifically, by analysing the functioning of a market-based instrument such as 

emission taxation, Carraro and Topa (1994) show that firms decide to innovate earlier if there is 

international coordination across countries compared with a situation where governments 

freely set the domestic tax rate. Along the same lines, Beise and Rennings (2005) show that the 

creation of lead markets that pull eco-innovation is more effective for selected clean energy 

technologies (wind energy and fuel-efficient passenger cars) when a country adopts 

environmental regulations also adopted by other countries. Finally, the issue of international 

environmental policy similarity has been the object of a recent contribution by Dechezleprêtre et 
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al. (2015) on the cross-border diffusion of new environmental technologies which shows that 

the smaller the country pair regulatory distance, the higher the cross-border flows of 

compliance technologies. Though the focus of this last contribution is on cross-border diffusion 

of eco-innovation and not on its generation, it provides the basis for developing a workable 

definition of policy similarity in terms of country pair policy distance. 

In this paper, we propose that the issue of cross-national policy coordination may also be 

interpreted under the lens of policy mix analysis. In particular, we want to address if and to what 

extent the similarity between domestic and foreign policy mixes fosters countries’ eco-

innovation performances. Hence, we formulate the following hypothesis: 

 

HP3. The similarity between domestic and foreign policy mixes positively affects innovation 

performance in EE technologies. 

 

4. Empirical strategy 

Building on the reviewed literature on the drivers of eco-innovation, the proposed empirical 

analysis aims to evaluate the impact of policy mix characteristics on the generation of new 

technologies in the energy efficiency sector by controlling for the different forces that can shape 

innovation dynamics in the considered sector. 

The linear econometric model to be estimated is as follows: 

 

𝑌𝑖,𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛽𝑜 + 𝛽1(𝐷𝑜𝑚𝑃𝑜𝑙𝑖,𝑡−𝑝) + 𝛽2(𝐷𝑜𝑚𝑃𝑜𝑙𝑀𝑖𝑥𝑖,𝑡−𝑝) 

+𝛽3(𝐸𝑥𝑡𝑃𝑜𝑙𝑖,𝑡−𝑝) + 𝛽4(𝐸𝑥𝑡𝑃𝑜𝑙𝑆𝑖𝑚𝑖,𝑡−𝑝) + 𝛽5(𝐼𝑛𝑛𝑆𝑦𝑠𝑖,𝑡−𝑝) + 𝜀𝑖,𝑡 (1) 

 

where 𝑌𝑖,𝑡  indicates the innovation performance measure in the EE residential sector, i=1,…,N 

indexes countries (23 OECD), t=1990,…,2010 indexes time, 𝛼𝑖 are country-specific unobserved 

time invariant effects, 𝛾𝑡 are year-specific unobserved country invariant effects, p stands for 

eventual lag structure and 𝜀𝑖,𝑡 are stochastic errors. 

In order to test our hypotheses and account for different factors influencing innovation 

activities in the sector under scrutiny, five specific groups of variables have been considered 

representing respectively: the EE domestic policy setting (𝐷𝑜𝑚𝑃𝑜𝑙), the range of different 

characteristics of the EE domestic policy mix (𝐷𝑜𝑚𝑃𝑜𝑙𝑀𝑖𝑥), the EE policies adopted by foreign 

countries (𝐸𝑥𝑡𝑃𝑜𝑙), the similarity degree between the domestic and foreign policy mix 

(𝐸𝑥𝑡𝑃𝑜𝑙𝑆𝑖𝑚), and the national innovation system (𝐼𝑛𝑛𝑆𝑦𝑠) as an additional control on country 

fixed effects. 

 

4.1 Dependent variables 
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Measuring eco-innovation is not an easy task and the empirical literature identified different 

types of indicators (Kemp and Pearson, 2007). Surveys based on questionnaires are able to 

capture a wide range of firms’ strategies (del Río González, 2005; Frondel et al., 2008; Horbach 

et al., 2013; Kesidou and Demirel, 2012; Lanoie et al., 2011; Oltra et al., 2010; Wagner, 2007), but 

they mostly provide qualitative information and may be subject to misleading interpretations by 

respondents. Specific information on R&D expenditures can be considered a good proxy of 

innovation activities, but this is rarely available for the private sector when specific 

technological sectors are under scrutiny. 

Information contained in patent documents represents a viable alternative for analysing eco-

innovations since it is publicly available for a reasonably long time series and provides detailed 

information that allows researchers to conduct rich quantitative analyses. Consequently, the use 

of patent data is widespread in the economics of innovation literature (Archibugi and Pianta, 

1996; Cohen et al., 2000; Griliches, 1990; Guellec and van Pottelsberghe de la Potterie, 2002; 

Lanjouw et al., 1998; Lanjouw and Schankerman 2004; Malerba and Orsenigo, 1996; Pavitt, 

1984; van Zeebroeck et al., 2006) and also in the contributions that specifically analyse eco-

innovation (Dechezleprêtre et al., 2011, 2015; Haščič et al., 2009; Jaffe and Palmer, 1997; 

Johnstone et al., 2010; Oltra et al., 2010; Wagner, 2007). 

However, the use of patent data presents several drawbacks: among others, the distribution 

of patents across firms and sectors is highly skewed, there is a large variance in patent quality 

and, most importantly, only a fraction of innovations is patented (Griliches, 1990; Jaffe and 

Trajtenberg, 2004). With regard to our study, by adopting patents as a measure of eco-

innovation, we are able to capture only some of the technological eco-innovation activities, thus 

excluding all the other forms of eco-innovation that are part of the broad definition provided by 

Kemp and Pearson (2007). Accordingly, the interpretation of the empirical results should 

account for such a limited information content of the adopted innovation measure. 

In this work, following the contribution by Costantini et al. (2014a), innovation in the EE 

domain is measured by the count of patent applications filed at the EPO by 23 OECD countries 

over the period 1990-2010.5 Despite the extensive work on defining relevant patent classes 

related to eco-innovation, some specific domains still remain poorly investigated. In the case of 

EE technologies, standard international patent classification tools only partially represent the 

whole range of sub-domains characterizing this field. The patent database developed by 

Costantini et al. (2014a) and here adopted allows the Y02 Cooperative Patent Classification 

                                                      
5 Austria, Australia, Belgium, Canada, Switzerland, Germany, Denmark, Spain, Finland, France, the United Kingdom, 
Greece, Ireland, Italy, Japan, Korea, Luxembourg, Netherland, Norway, New Zealand, Portugal, Sweden, the United 
States. 
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(CPC)6 based on patent classes for green technologies to be integrated with the specific work 

carried out by Noailly and Batrakova (2010), mapping EE technologies in the building sub-sector 

and the detailed analysis on the sub-sector of electrical appliances developed by Costantini et al. 

(2014b). A complete list of keywords and patent classes used for mapping this technological 

domain is provided in the Appendix, Tables A1a-A1b. 

The selected patents applied to the EPO are classified by application date and assigned to the 

applicant’s country. When multiple assignee countries are present for a single patent, we have 

assigned a proportion of the considered patent to each country on the basis of the number of 

assignees for each country. We are aware that several studies have tried to analyse innovation 

dynamics by also controlling for patent quality (Hall et al., 2005; Jaffe and Trajtenberg, 2004; 

Popp, 2002). In this respect, two general issues are considered here. First, given that EPO 

applications are more expensive than applications to national patent offices, inventors typically 

apply to the EPO if they have strong expectations in terms of economic exploitation of the 

invention. Hence, for the purpose of this paper, we have chosen EPO data instead of single 

national patent offices because the difference in costs provides a quality hurdle that reduces 

applications for low-value inventions (de Rassenfosse and van Pottelsberghe de la Potterie, 

2013; EPO, 1994). Although the European market is significant, some bias towards applications 

from European inventors is still expected. In the empirical analysis undertaken in this study, this 

bias is addressed through the inclusion of country fixed effects.7 

 

4.2 Independent variables 

In this work, we propose a specific effort to map public policies in the field of energy efficiency. 

In order to empirically test our research hypotheses on the characteristics of the policy mix, we 

need to retrieve information on the three policy pillars identified as relevant in the previous 

sections. 

 

4.2.1 Policy pillars 

With regard to the demand-pull pillar, we consider the impact of energy taxation on the market 

                                                      
6 The Cooperative Patent Classification, as developed by the United States Patent and Trademark Office (USPTO), 
classifies patents into nine sections, A-H and Y, which in turn are sub-divided into classes, sub-classes, groups and 
sub-groups. 
7 According to Popp (2005), there are different ways to measure knowledge production in the green technologies field 
using patent data. In order to provide robustness checks for these different measures, in the Appendix we have 
reported results obtained for Table 2 estimated on two alternative dependent variables, a citation-based patent 
measure, as reported in Table A6, and a patent stock measure, as reported in Table A7. With regard to the citation-
weighted patent measure, following Squicciarini et al. (2013), we have built a count indicator based on forward 
citations in the five years after their publication using the information contained in the OECD EPO Indicators 
Database. In the patent stock measure, we have followed the methodology proposed by Popp (2005). In both cases, 
empirical results reported in the main text, obtained using a pure patent count measure, are mainly confirmed. 
Accordingly, in the following sections, we report econometric results based on this latter innovation measure. All 
results for Tables 3-6 are confirmed when the two alternative dependent variables are considered and they are fully 
available upon request from the authors. 
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price in energy demand for the residential sector as a price-based instrument.8 In so doing, we 

follow previous contributions which generally found that prices played a significant and positive 

role in fostering innovation dynamics in more efficient energy technologies (Jaffe and Stavins, 

1995; Newell et al., 1999; Noailly, 2012; Popp, 2002; Verdolini and Galeotti, 2011). Since we are 

interested in capturing the role of this policy in affecting residential energy consumption and 

consequently favouring EE innovation, we calculate the average tax rate applied to energy 

consumption in the residential sector for each country and year (here expressed as USD at 

constant 2010 prices per unit of energy consumed, expressed in tonnes of oil equivalent (toe)). 

In order to consider the different mix of energy commodities used in the residential sector at the 

country level, we weight energy tax rates by consumptions related to each specific source as 

follows: 

 

 𝐷𝑜𝑚𝑃𝑜𝑙𝐷𝑒𝑚𝑎𝑛𝑑−𝑝𝑢𝑙𝑙𝑖,𝑡 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑇𝑎𝑥𝑖,𝑡 =

∑ (𝐸𝑛𝑒𝑟𝑔𝑦 𝑡𝑎𝑥𝑖,𝑡
𝑛 ∙ 𝐸𝑛𝑒𝑟_𝑐𝑜𝑛𝑠𝑖,𝑡

𝑛 )
3

𝑛=1

∑ (𝐸𝑛𝑒𝑟_𝑐𝑜𝑛𝑠𝑖,𝑡
𝑛 )

3

𝑛=1

 (2) 

 

where 𝑛 indexes the energy commodity (diesel, electricity and natural gas), whereas 𝑖 and 𝑡 

refer to countries and time, respectively. Tax rates are taken from IEA Energy Prices and Taxes 

Statistics (IEA, 2012a), whereas data on energy consumption are taken from IEA Energy Balance 

Statistics (IEA, 2012b). All data strictly refer to the residential sector. In this way, the stringency 

level of the policy adopted and its relative impact on the specific residential energy input mix 

used in each country can be considered simultaneously, thus controlling also for the peculiarity 

of the residential sector within the country-specific national energy system. 

The technology-push policy pillar is quantified by taking the stock of public R&D efforts in EE 

(expressed in million USD at 2010 constant prices) taken from IEA Technology Statistics (IEA, 

2013a, online database) as: 

 

 𝐷𝑜𝑚𝑃𝑜𝑙𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦−𝑝𝑢𝑠ℎ𝑖,𝑡
= 𝑅𝐷 𝑖𝑛 𝐸𝐸𝑖,𝑡  =  ∑{𝑅𝐷 𝑖𝑛 𝐸𝐸𝑖,𝑠 ∙ 𝑒[−𝜕(𝑡−𝑠)]}

𝑡

𝑠=0

 (3) 

 

In so doing, we are supposing that technological knowledge has a cumulative character and, 

hence, can be summed over time, but that knowledge capital is also subject to an obsolescence 

rate (Evenson, 2002). We have applied an average decay rate of 15 per cent to the Perpetual 

                                                      
8 Due to data constraints, different forms of demand-pull policies such as command and control instruments can be 
analysed only in qualitative terms and they are included in the analysis of the characteristics of the policy mix. 
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Inventory Method suggested by OECD (2009), so that in eq. (3) 𝜕 indicates the discount rate, 𝑖 

indexes countries and 𝑠, 𝑡 indicate time.9 

The third policy pillar refers to systemic instruments that specifically address issues related 

to the promotion of energy efficiency in the residential sector. Measurement problems in this 

case are relevant since we only have qualitative information on the set of instruments identified 

by the IEA and available from the Energy Efficiency Policy and Measures Database (IEA, 2013b). 

We collect information from the IEA database on EE policy instruments in three sectors 

(buildings, lighting, residential appliances) for OECD countries, still in force or ended in the 

1990-2010 period, classified in six types (Table1).  

 

Table 1– Policy types and instruments 

Type # Policy Type Instrument 

1 Economic Instruments Direct investment 
Fiscal/financial incentives 
Market-based instruments 

2 Information and Education Advice/aid in implementation 
Information provision 
Performance label 
Professional training and qualification 

3 Policy Support Institutional creation 
Strategic planning 

4 Regulatory Instruments Auditing 
Codes and standards 
Monitoring schemes 
Obligation schemes 
Other mandatory requirements 

5 Research, Development and 
Deployment (RD&D) 

Demonstration projects 
Research programmes 

6 Voluntary Approaches Negotiated agreements 
Public voluntary schemes 
Unilateral commitments 

Source: IEA (2013b) 
 

For the construction of our indicator representing systemic instruments, we only consider 

policies classified in types 2, 3, 6, namely Information and Education, Policy Support and 

Voluntary Approaches. With regard to the first type, it includes all forms of support to the 

cognitive-informational context as guidelines and recommendations to improve the adoption of 

energy saving behaviours at the household level (e.g., the Germany's Blue Angel eco-labelling 

scheme for highly insulated, hot water tanks, adopted in 2006) or to diffuse the notion of energy 

                                                      
9 The literature suggests a depreciation rate varying between 5 and 30 per cent (Benkard, 2000; Gallagher et al., 2012; 
Hall, 2007, Nemet, 2009). As a robustness check, we also tested different decay rates, namely 10 and 20 per cent. 
Results in Tables 2-4 are based on a 15 per cent decay rate and results obtained by applying different rates are quite 
similar to those reported in the text. Full details on robustness checks are available upon request. 
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efficiency at different education degrees in order to prepare executives to be ready to adopt an 

energy-efficient managerial culture (e.g., the Energy Smart Schools programme adopted in 1998 

in the U.S.). 

The second type includes policies that aim to reinforce the support provided by the 

institutional context in achieving energy efficiency targets such as, for instance, through the 

creation of ad hoc government agencies (e.g., the creation of the National Agency for Energy 

Efficiency in Italy in 2008). 

The third type refers to all voluntary approaches that may help the introduction and adoption 

of energy-efficient behaviours, as described by Kemp (1997), consisting in agreements between 

private agents and governments to assist consumers and building industries in achieving better 

energy performances (e.g., the Voluntary Building Initiatives Programme adopted in Australia in 

2006). 

Considering the qualitative information of the IEA database, we have assigned value 1 if there 

is a policy in one of the three types for each country and year. The final measure of systemic 

instruments is given by the sum of counts as the cumulative number of policy instruments in 

force at time 𝑡 in country 𝑖: 

 

 𝐷𝑜𝑚𝑃𝑜𝑙𝑆𝑦𝑠𝑡𝑒𝑚𝑖𝑐 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑠𝑖,𝑡
= ∑ (∑(𝑃𝑂𝐿𝑖,𝑠

𝑞
)

𝑡

𝑠=0

)

𝑞=2,3,6

 (4) 

 

where 𝑞 ∈ [2,3,6] represents the three policy types selected as specified in Table 1. 

According to Johnstone et al. (2010), this modelling choice allows the whole range of policies 

still in force at time t in country 𝑖 to be considered for each year and changes occurring to 

policies over time can also be accounted for. 

 

4.2.2 The characteristics of the domestic policy mix 

In order to test the first hypothesis related to the balance between demand-pull and technology-

push instruments in the domestic policy mix (HP1), we compute a similarity index between 

these two pillars. Considering that these are expressed in different units, USD per toe for energy 

tax and millions USD for R&D in EE, we have scaled this second indicator by total residential 

energy consumption, thus obtaining two homogenous measures expressed in USD per toe. The 

empirical formulation of this measure is adapted from the contributions by Frenken et al. (2007) 

and Los and Timmer (2005) for the cognitive proximity matrix used to assess the technological 

relatedness. Accordingly, our measure of policy mix balance is as follows: 
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 𝐷𝑜𝑚𝑃𝑜𝑙𝑀𝑖𝑥𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑖,𝑡
=

[
 
 
 
 
 
 
|𝐸𝑛𝑒𝑟 𝑡𝑎𝑥𝑖,𝑡 −

𝑅𝐷 𝑖𝑛 𝐸𝐸𝑖,𝑡

∑ (𝐸𝑛𝑒𝑟_𝑐𝑜𝑛𝑠𝑖,𝑡
𝑛 )

3

𝑛=1

|

√𝐸𝑛𝑒𝑟 𝑡𝑎𝑥𝑖,𝑡 +
𝑅𝐷 𝑖𝑛 𝐸𝐸𝑖,𝑡

∑ (𝐸𝑛𝑒𝑟_𝑐𝑜𝑛𝑠𝑖,𝑡
𝑛 )

3

𝑛=1

2

]
 
 
 
 
 
 
−1

 (5) 

 

The closer the similarity in the intensity of the two policy instruments, the greater the 

balance between them and the higher the expected positive influence on EE innovation. 

The second characteristic of the policy mix under scrutiny refers to its comprehensiveness and 

thus includes all types of instruments: demand-pull, technology-push and systemic. This variable 

has been built using all the qualitative information provided by the IEA database (Table 1), 

where demand-pull and technology-push instruments are also homogeneously mapped and 

quantified in a binary (0-1) system as are the systemic instruments. Although the EE policies for 

the 23 OECD countries derived from the IEA database vary in distribution across types and 

instruments depending on the country under investigation, they can be classified as the three 

pillars previously mentioned. For demand-pull policies, examples include the adoption of 

compulsory energy labelling for buildings (Canada, the Netherlands, the United Kingdom, Italy), 

or the codification of minimum energy performance requirements for electrical appliances 

(Australia and Japan) as regulatory instruments, in addition to the already described energy 

taxation channel (that in this case is qualitatively measured with value 1 if the country adopts an 

energy tax policy). Within technology-push policies, there are examples of direct public 

investments in R&D activities (such as support for solid-state lighting, SSL, R&D activities to 

accelerate market introduction of high-efficiency, high-performance SSL products in the U.S., 

adopted in 2000), or the implementation of demonstration projects (such as, for instance, the 

Solar Decathlon initiative adopted in the U.S. in 2002 or the large-scale PV demonstration 

project in the UK adopted in 2002). 

In order to test our hypotheses (HP2a), we calculate a proxy for policy mix comprehensiveness 

as an aggregate stock of total policies for EE given by the sum of the stocks of policy instruments 

(as in eq. 5) belonging to the whole range of policy types described in Table 1: 

 

 𝐷𝑜𝑚𝑃𝑜𝑙𝑀𝑖𝑥𝐶𝑜𝑚𝑝𝑟𝑒ℎ𝑒𝑛𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖,𝑡
= ∑ (∑(𝑃𝑂𝐿𝑖,𝑠

𝑞
)

𝑡

𝑠=0

)

6

𝑞=1

 (6) 

 

where 𝑞 ∈ [1,2, … ,6] represents all the six policy types. 

Moreover, the inclusion of this variable in squared terms in the model allows us to eventually 

capture non-linear effects. In particular, we can test the existence of a threshold level beyond 
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which the variety of policy instruments contemporaneously implemented becomes excessive, 

with an increasing risk of conflicting interactions leading to negative effects in terms of 

innovation performance (HP2b). 

The adoption of this approach allows us to make a first step forward with regard to the 

analysis by Sovacool (2009) based on case studies towards quantifying the overall effect of 

different combinations of policy instruments in terms of eco-innovation performance in EE 

technologies, in relation to the selected policy mix characteristics. However, given data 

constraints, our analysis is not able to identify specific policy interaction effects and the eventual 

sources of complementarities or conflicts within the policy mix.10 

 

4.2.3 The role of foreign policies 

In order to provide results that are comparable with existing empirical evidence, we first have to 

compute indicators to assess the direct influence played by foreign policies interpreted as policy 

spillovers. These are measured for each f-th policy pillar (𝐷𝑜𝑚𝑃𝑜𝑙𝑟,𝑡
𝑓

) representing demand-pull, 

technology-push and systemic instruments as defined in sub-section 4.2.1 according to the 

following expression: 

 

 𝐸𝑥𝑡𝑃𝑜𝑙𝑆𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟𝑖,𝑡

𝑓 = ∑ 𝑋𝑖𝑟,𝑡0
∙ 𝐷𝑜𝑚𝑃𝑜𝑙𝑟,𝑡

𝑓

𝐶

𝑟=1

 ∀𝑟 ≠ 𝑖  𝐶 = 22 (7) 

 

where the overall effect is represented by the sum of the foreign policies implemented in each r-

th country weighted by the bilateral initial trade flows.11 

Here a clarification on the weighting system used to aggregate different policies is needed. In 

our analysis, given the focus on the domestic innovation performance, the weighting system 

must reflect the relative dimension of foreign market potential for new domestically generated 

technologies. For this purpose, we build the weighting matrix by taking the bilateral export 

flows only in energy intensive manufacturing sectors 𝑋𝑖𝑟,𝑡from country 𝑖 to country 𝑟 taken from 

the UN-COMTRADE database (see Table A2 for a list of classes and codes). This is a well-

established procedure, especially in the international knowledge spillover literature (Keller, 

2004) which suggests that a sector-based analysis has to be preferred to an aggregate trade 

measure since the latter might reduce the capacity of the empirical model to account for the real 

                                                      
10 We are aware that this issue represents a limitation of our work that needs to be addressed by future research 
when more detailed quantitative and comparable information become available. 
11 In the sparse contributions addressing the role of policy spillovers in eco-innovation, different measures have been 
adopted (Dechezleprêtre and Glachant, 2014; Peters et al., 2012). In this paper, we follow the suggestion by 
Dechezleprêtre et al. (2015) to adopt the same type of indicators for assessing the role of domestic and foreign polices 
as an effective empirical strategy. 
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effects associated with international channels (Acharya and Keller, 2009).12 

However, the adoption of this bilateral export flows as a weighting system for measuring the 

strength of the international relationship between each couple of countries may be somewhat 

endogenous with regard to innovation performance in EE technologies. In other words, the 

ability to develop new EE technologies could ensure larger comparative advantages in exporting 

goods characterised by high energy efficiency in the selected energy intensive manufacturing 

sectors (see Table A2). In order to overcome this potential issue, the weighting system is taken 

as fixed over time, by considering the initial value of the export bilateral matrix.13 This also 

allows us to depurate the analysis of the influence exerted by changes over time in international 

market conditions. For the same reason, we have calculated the average value of exports in the 

first two years (1990-1991) considered in the dataset. 

Turning to our third research hypotheses, following the approach proposed by 

Dechezleprêtre et al. (2015) of measuring the regulatory distance between country pairs, we 

measure the similarity between domestic and foreign policies with reference to the three policy 

pillars and the two characteristics of the policy mix considered in our analysis. 

The first similarity indicator is hence calculated considering the policy distance between each 

i-th country and the other r countries for each f-th policy pillar as: 

 

 𝐸𝑥𝑡𝑃𝑜𝑙𝑆𝑖𝑚 𝑖,𝑡
𝑓

= ∑ 𝑋𝑖𝑟,𝑡0
∙

(

 
|𝐷𝑜𝑚𝑃𝑜𝑙𝑖,𝑡

𝑓
− 𝐷𝑜𝑚𝑃𝑜𝑙𝑟,𝑡

𝑓
|

√𝐷𝑜𝑚𝑃𝑜𝑙𝑖,𝑡
𝑓

+ 𝐷𝑜𝑚𝑃𝑜𝑙𝑟,𝑡
𝑓2

)

 

−1
𝐶

𝑟=1

 (8) 

 

 

The original formulation proposed by Dechezleprêtre et al. (2015) directly adopts the 

absolute value of the distance between the regulatory standards across each country-pair (the 

numerator in eq. 8), whereas here we adopt the same methodology as described in eq. (5), thus 

accounting for the magnitude of domestic and foreign policy efforts in each pillar. 

The second set of indicators measures the degree of similarity between the two 

characteristics of the policy mix here analysed: the balance between demand-pull and 

technology-push policies and the comprehensiveness of the policy mix. 

With regard to the former, we construct the inverse of the absolute distance in the balance 

level of the domestic policy mix for country 𝑖 compared with all other countries (𝑟)(∀𝑟 ≠ 𝑖 𝐶 =

                                                      
12The classes selected for the export flows variable refer to the maximum available disaggregation for OECD countries 
with a direct link to energy consumption. Although it would be more appropriate to consider only the flows directly 
related to the residential sector, it is not possible to obtain trade flows associated with end use of the residential 
sector from trade data since the classification combines industries, services and households. This computational 
choice due to lack of data availability should be considered when commenting on empirical results. 
13 We would like to thank an anonymous referee for highlighting this issue and suggesting the adopted solution. 
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22), aggregated by the same weighting matrix as for policy spillovers:14 

 

 𝐸𝑥𝑡𝑃𝑜𝑙𝑆𝑖𝑚𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑖,𝑡
= ∑ 𝑋𝑖𝑟,𝑡0

∙ (|𝐷𝑜𝑚𝑃𝑜𝑙𝑀𝑖𝑥𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑖,𝑡
− 𝐷𝑜𝑚𝑃𝑜𝑙𝑀𝑖𝑥𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑟,𝑡|)

−1
𝐶

𝑟=1

 (9) 
 

 

Finally, the similarity in policy mix comprehensiveness is expressed as follows:15 

 

 𝐸𝑥𝑡𝑃𝑜𝑙𝑆𝑖𝑚𝐶𝑜𝑚𝑝𝑟𝑒ℎ𝑖,𝑡
= ∑ 𝑋𝑖𝑟,𝑡0

∙

(

 
|𝐷𝑜𝑚𝑃𝑜𝑙𝑀𝑖𝑥𝐶𝑜𝑚𝑝𝑟𝑖,𝑡

− 𝐷𝑜𝑚𝑃𝑜𝑙𝑀𝑖𝑥𝐶𝑜𝑚𝑝𝑟𝑟,𝑡
|

√𝐷𝑜𝑚𝑃𝑜𝑙𝑀𝑖𝑥𝐶𝑜𝑚𝑝𝑟𝑖,𝑡
+ 𝐷𝑜𝑚𝑃𝑜𝑙𝑀𝑖𝑥𝐶𝑜𝑚𝑝𝑟𝑟,𝑡

2

)

 

−1
𝐶

𝑟=1

 (10) 

 

4.2.4 Control variables 

In the econometric analysis we control for the role of national innovation systems as a major 

driving force in the knowledge production process which may not be completely absorbed by 

the introduction of country fixed effects in the estimation. 

We measure national innovation capacity by computing two alternative measures that 

capture technological capabilities. First, we calculate a knowledge stock based on national gross 

expenditure in R&D (GERD) taken from OECD Main Science and Technology Indicators (OECD, 

2013), net of public R&D in EE. For the technology-push EE specific measure, we adopt a 

perpetual inventory method with a decay rate equal to 15 per cent. Second, we consider the total 

number of patents applied by different countries to the EPO (with the exclusion of specific EE 

patents), given by the PATSTAT online database as an alternative measure.16 

 

4.3 Econometric issues 

The use of patent data as proxies of the innovation activity implies that we have to deal with 

count variables with non-negative values. Appropriate econometric models for this kind of 

variable are the Poisson Regression Model (PRM) and the Negative Binomial Regression Model 

(NBRM). According to Allison and Waterman (2002) and Greene (2007), the conditional 

negative binomial model for panel data developed by Hausman et al. (1984) is not a true fixed-

effects method since it does not control for all time-invariant covariates. Considering the 

country-based panel dataset here adopted, a fixed-effects estimator is highly recommended in 

                                                      
14 In this case we follow the same formulation proposed by Dechezleprêtre et al. (2015) since the balance indicator 
(eq. 5) already accounts for the overall effects of technology-push and demand-pull instruments. 
15 The indices computed in eqs. (9)-(10) have also been measured using alternative formulations. In particular, the 
similarity in the balance of the policy mix in eq. (9) has been also calculated by applying the full similarity formula as 
eq. (10) and vice versa. Results reported in Section 5 are not influenced at all by the specific formulation of the 
external similarity measure adopted. All results are fully available upon request from the authors. 
16 For an overview of all variables and data sources, see the Appendix, Tables A2-A3-A4a,b-A5a,b. 
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order to control for unobservable country-specific heterogeneity. The Poisson fixed-effects 

estimator, with count data equivalent to the within groups estimator, allows unobserved 

heterogeneity to be dealt with, but it can be biased by an excess in zeros and an overdispersion 

problem (Cameron and Trivedi, 1986, 1998). To this end, Santos Silva and Tenreyro (2006) 

show that a Poisson fixed-effects estimator performed by a pseudo-maximum likelihood 

technique controls for both unobservable country-specific heterogeneity and zero values and 

overdispersion problems. Finally, Cameron and Trivedi (2013) describe how the default 

standard errors in Poisson panel models are likely to be biased and that they have to be replaced 

with cluster-robust standard errors, by clustering on the individual i. Accordingly, we have 

estimated eq. (1) by performing a Poisson fixed-effects method with robust standard errors 

clustered in country i. 

When looking at temporal structure, it is worth mentioning that all explanatory variables are 

treated with a potential number of lags equal to p. This is quite a common choice in the literature 

where the dependent variable is represented by an innovation output measure. This modelling 

choice also reduces potential endogeneity issues related to regressors such as, for instance, 

innovation input or policy variables which may be endogenously linked to the dependent 

variable. 

In order to test the validity of alternative lag structures, we have performed a Bayesian 

information criterion (BIC) applied to the model in eq. (1) testing for p assuming value 1, 2, 3. 

Since the penalty term for the number of parameters in the model is larger in BIC than in AIC, 

the first one is to be preferred as a more stringent overfitting model test.17 The resulting 

temporal structure from BIC values is characterized by a one-year lag. This empirical result is 

consistent with existing contributions (see Johnstone et al., 2010, among others). Moreover, 

from a conceptual point of view, energy efficiency policy variables over this medium term are 

fairly stable or growing slightly because they respond to a long run commitment in policy design 

and it is therefore difficult to estimate complicated lag structures.18 

The inclusion of policy variables in the regressors may present econometric problems related 

to potential bias in estimations due to endogeneity. At the theoretical level, this arises if mutual 

causality between policy and innovation exists since successful innovative activities may ensure 

increased competitiveness in specific sectors, resulting in policy decisions that may lead to the 

adoption of stringent environmental policies in those fields in which technologies are already 

available. Since the use of lagged policy variables may not be enough to mitigate potential 

endogeneity, we also control for this potential bias by implementing an instrumental variable 

Poisson estimator with endogenous regressors performed by GMM (Cameron and Trivedi, 2013; 

                                                      
17 Results on BIC for alternative lag structures are available upon request from the authors. 
18 This is also valid for the other explanatory variables, especially those related to innovation capabilities (Hall et al., 
1986). 
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Wooldridge, 2010) applied to eq. (1).19 

 

5. Empirical results 

The first part of the empirical analysis follows the contributions discussed in Section 2 and 

refers to the estimation of a baseline model in which the role played by domestic policies in 

shaping innovation performance in EE technologies is tested. Such a test is designed to provide 

us with solid empirical ground on which to validate our specific hypotheses on policy mix 

characteristics. 

Results reported in Table 2 show that for both variables related to the national innovation 

capacity, the associated coefficients result positive and statistically robust, revealing that 

technological capabilities play a significant role in shaping innovation activities in the specific 

technological domain under scrutiny. Though the BIC test seems to prefer the total patents per 

capita in terms of model fitting, this latter variable may suffer from potential endogeneity with 

regard to the dependent variable. Given that all results are fully consistent if the two alternative 

innovation variables are adopted, in the following specifications we use the stock of GERD as a 

control variable for national technological capabilities.20 

Moving to the analysis of results related to individually tested EE policies, results reported in 

Table 2 suggest that demand-pull and technology-push instruments are able to stimulate 

innovative performance in EE technologies. According to previous findings on different eco-

innovation domains (Costantini et al., 2015), the most effective policy instrument is the demand-

pull option represented here by the energy tax variable, with a higher estimated coefficient 

compared with that for the technology-push policy variable, namely the stock of R&D in EE. 

Systemic instruments also provide a positive impulse to innovation performance in EE 

technologies, though the statistical robustness of the estimated coefficient is limited. When the 

three policy pillars are simultaneously included in the regression model (Column 6), the 

associated coefficients are partly reduced, but the model fitting tests (both AIC and BIC) indicate 

that the contemporaneous inclusion of all policy variables improves the model quality. 

The results discussed so far allow us to conclude that the role of public policies in driving 

innovation activities in EE technologies is confirmed and that both the database and the 

specified baseline model can represent reliable empirical ground for testing the validity of our 

                                                      
19 The results for estimation of Table 2 in the text by IV Poisson are reported in the Appendix, Table A8, revealing that 
the Poisson fixed-effects estimates are robust and not affected by endogeneity issues. All the other estimates reported 
in Tables 3-6 have been also checked for robustness by performing the same regression with a IV Poisson estimator. 
All results remain robust but, for the sake of brevity, results are available upon request from the authors. 
20 Results reported in Tables 2-6 are obtained by applying a one-year lag to covariates in order to control for potential 
endogeneity. The temporal structure has been selected according to robustness checks carried out with the help of a 
Bayesian Information Criterion (BIC) for three alternative lag structures, namely one, two or three-year lag. According 
to the BIC test, we select the specification with the lower BIC value, corresponding to the one-year lag temporal 
structure. 
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specific research hypotheses. 

 

Table 2 - Direct effect of domestic demand-pull, technology-push and systemic policies 

 
(1) (2) (3) (4) (5) (6) 

Stock of GERD 1.381*** 
 

1.218*** 1.281*** 1.098** 1.041** 

 (0.33) 
 

(0.32) (0.30) (0.39) (0.37) 

Total patents per cap. 
 

0.973*** 
  

 
 

 
 

(0.07) 
  

 
 

Dom. pol. (demand-pull) 
  

0.877*** 
 

 0.677*** 

 
  

(0.21) 
 

 (0.14) 

Dom. pol.(technology-push) 
   

0.136***  0.075*** 

    (0.04)  0.02 

Dom. pol.(systemic instr.) 
   

 0.165* 0.091* 

 
   

 (0.07) (0.05) 

No. Obs. 460 460 460 460 460 460 

Log-Likelihood -3400 -2700 -3000 -3200 -3200 -2900 

Chi-sq 169 1147 207 666 867 1549 

AIC 6739 5363 6085 6369 6486 5894 

BIC 6763 5388 6114 6398 6515 5932 

Robust clustered standard errors in parentheses 
* p< 0.1, ** p< 0.05, *** p< 0.01 

 

According to HP1, we consider the role played by policy mix balance between demand-pull 

and technology-push instruments. As shown by results in Columns (1)-(5) in Table 3, the 

adopted indicator measuring policy mix balance significantly enters the econometric model with 

a positive sign, confirming our hypothesis on the enhancing role of this policy mix characteristic 

for innovation performance in EE technologies. Though we are not able to distinguish between 

different generation technologies within the EE domain, a possible interpretation of this result is 

that when the distribution of economic resources and policy efforts between demand-pull and 

technology-push instruments is more balanced, both exploration and exploitation innovation 

activities are fostered leading to an overall increase in innovation performance. 

This influence is statistically robust whether accounting for the three distinguished policy 

pillars or not since the coefficient for the balance of the domestic policy mix remains positive 

and statistically robust in all models, without significant changes in the coefficient value. It is 

clear that the influence of the balance characteristic is relatively lower than that played by the 

two policy pillars taken alone since the coefficient value is smaller than those for demand-pull 

and technology-push instruments. At the same time, by looking at the AIC and BIC tests, it is 

worth noticing that the model fitting improves when, together with systemic instruments, the 

two policy pillars are complemented by considering their balance in the econometric estimation. 
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Table 3 - Effects of domestic policy mix characteristics-balance (HP1) 

 
(1) (2) (3) (4) (5) 

Stock of GERD 1.421*** 1.256*** 1.317*** 1.147** 1.069** 

 
(0.33) (0.32) (0.31) (0.39) (0.38) 

Dom. pol. (demand-pull) 
 

0.811*** 
 

 0.656*** 

  
(0.18) 

 
 (0.14) 

Dom. pol.(technology-push) 
  

0.116**  0.059** 

   
(0.04)  (0.02) 

Dom. pol.(systemic instr.)    0.157* 0.094* 

    (0.06) (0.04) 

Dom. pol. mix (balance) 0.005*** 0.003*** 0.003*** 0.005*** 0.002*** 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

No. Obs. 460 460 460 460 460 

Log-Likelihood -3300 -3000 -3100 -3100 -2900 

Chi-sq 3097 34000 3542 4614 5200 

AIC 6540 6004 6313 6314 5857 

BIC 6569 6037 6346 6347 5898 

Robust clustered standard errors in parentheses 
* p< 0.1, ** p< 0.05, *** p< 0.01 

 

Turning to the second research hypothesis, in Table 4, we test the influence played by the 

comprehensiveness of the policy mix. We first show that policy mix comprehensiveness positively 

affects innovation performance in EE technologies. Moreover, this effect is additional to those 

independently exerted by the three policy pillars here considered. However, as hypothesised 

(HP2b), policy mix comprehensiveness cannot increase indefinitely since when too many 

instruments are simultaneously adopted, policy mix effectiveness tends to be reduced. The 

quadratic term of the comprehensiveness variable presents a statistically robust negative 

coefficient, meaning that a threshold level in this characteristics exists beyond which some 

negative interaction effects may occur as a result of policy fragmentation. The analysis of these 

potential negative interactions is not the focus of our analysis since our data and the empirical 

strategy are designed to test only for the overall effect played by policy mix characteristics. 

Nevertheless, we believe our results provide a good starting point for future research on the 

sources of possible negative effects within comprehensive policy mixes. 

Turning back to econometric results, model fitting increases when the quadratic term is 

included in the analysis, with a higher coefficient value for the comprehensiveness variable than 

the case in which only the linear effect is considered (Column 1). 

Interestingly, the robustness of these results is not reduced when we include the three 

variables for demand-pull, technology-push and systemic instruments and when the balance 

variable is also considered. Moreover, results reported in Column 7 seem to confirm the validity 

of adopting a research approach that tries to investigate the effect on the eco-innovation 

performance of the overall policy-mix as distinct from the role played by single instruments. 

Indeed, policy instruments in the three pillars play important positive effects in fostering 
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innovation in EE technologies (especially demand-pull and technology-push tools), but in order 

to understand the overall effect exerted by public intervention, it is also necessary to consider 

how different instruments are combined into mixes. From a statistical point of view, this is 

confirmed by the lower values of the AIC and BIC in the specification reported in Column 7, 

suggesting that the full model presents the best fitting in terms of model specification. 

 

Table 4 - Effects of domestic policy mix characteristics - comprehensiveness (HP2a,b) 

 
(1) (2) (3) (4) (5) (6) (7) 

Stock of GERD 1.226** 1.113** 1.049** 1.075*** 1.073** 1.011*** 1.043*** 

 
(0.41) (0.35) (0.33) (0.27) (0.35) (0.29) (0.29) 

Dom. pol. (demand-pull) 
  

0.579***   0.404* 0.347* 

   
(0.17)   (0.16) (0.16) 

Dom. pol.(technology-push) 
   

0.135***  0.104*** 0.091** 

    
(0.02)  (0.03) (0.03) 

Dom. pol.(systemic instr.)     0.034* 0.023* 0.047* 

     (0.06) (0.05) (0.05) 

Dom. pol. mix (balance) 
   

   0.003*** 

    
   (0.00) 

Dom. pol. mix (compreh.) 0.128* 0.495*** 0.420*** 0.451*** 0.474*** 0.395*** 0.385*** 

 (0.06) (0.08) (0.08) (0.08) (0.10) (0.09) (0.10) 

Dom. pol. mix (compreh.) sq.  -0.143*** -0.123*** -0.150*** -0.141*** -0.133*** -0.139*** 

  (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

No. Obs. 460 460 460 460 460 460 460 

Log-Likelihood -3200 -2800 -2700 -2600 -2800 -2600 -2500 

Chi-sq 1106 455 1130 4738 737 3654 3700 

AIC 6468 5579 5338 5312 5575 5202 5123 

BIC 6497 5612 5375 5349 5612 5247 5173 

Robust clustered standard errors in parentheses 
* p< 0.1, ** p< 0.05, *** p< 0.01 

 

Finally, together with the role played by national policies, according to HP3, we empirically 

test if, and to what extent, those adopted by foreign countries may also influence domestic 

innovation performance. The three mechanisms here investigated refer to: i) the direct influence 

played by foreign policies on domestic innovation activities in the form of demand-pull, 

technology-push and systemic instruments policy spillovers; ii) the role played by the similarity 

in terms of policy distance between countries in single policy instruments; iii) the influence 

exerted by the similarity between countries in terms of policy mix characteristics. The empirical 

results that test the first channel are reported in Table 5. 

As shown in Columns 1-2, there is clear and robust evidence that the adoption by other 

countries of demand-pull policies oriented toward the deployment of EE in the residential sector 

boosts domestic innovation performance. This policy spillover effect remains statistically robust 

whether the characteristics of the domestic policy mix are included or not in the regressors. In 

addition, the model fitting improves when the characteristics of domestic policy mix and policy 

spillovers are jointly considered, revealing that both internal and external policy dimensions 
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have to be accounted for. Demand-pull policies implemented by foreign countries complement 

domestic policies by creating the conditions for an enlarged demand for energy-efficient 

technologies that may be partly satisfied by the production of new technologies in the domestic 

context. 

 

Table 5- Effect on domestic innovation of external policies (direct spillover effect) 

 
(1) (2) (3) (4) (5) (6) 

Stock of GERD 1.197** 1.136*** 0.817** 0.863** 1.019** 1.019** 

 

(0.42) (0.33) (0.37) (0.36) (0.39) (0.39) 

Dom. pol. (demand-pull) 0.376*** 0.221* 0.439*** 0.216* 0.601*** 0.601*** 

 
(0.11) (0.12) (0.13) (0.09) (0.13) (0.13) 

Dom. pol.(technology-push) 0.064** 0.084** 0.073** 0.095*** 0.085*** 0.085*** 

 
(0.02) (0.03) (0.03) (0.02) (0.02) (0.02) 

Dom. pol.(systemic instr.) 0.064 0.054 0.007 0.026 0.076 0.076 

 (0.05) (0.05) (0.07) (0.06) (0.05) (0.05) 

Dom. pol. mix (balance) 
 

0.003*** 
 

0.003***  
 

  
(0.00) 

 
(0.00)  

 
Dom. pol. mix (compreh.) 

 
0.294*** 

 
0.275***  

 

  
(0.08) 

 
(0.07)  

 
Dom. pol. mix (compreh.) sq. 

 
-0.113*** 

 
-0.112***  

 

 
 

(0.03) 
 

(0.03)  
 

Ext pol. (demand-pull spill.) 1.970*** 1.121**     

 (0.59) (0.40)     

Ext pol. (technology-push spill.)   0.608*** 0.450***   

   (0.15) (0.12)   

Ext pol. (systemic instr. spill.)     0.026 0.026 

     (0.02) (0.02) 

No. Obs. 460 460 460 460 460 460 

Log-Likelihood -2700 -2500 -2600 -2400 -2900 -2900 

Chi-sq 2274 6400 2052 1100 1706 1706 

AIC 5405 4998 5288 4837 5819 5819 

BIC 5446 5052 5330 4890 5861 5861 

Robust clustered standard errors in parentheses 
* p< 0.1, ** p< 0.05, *** p< 0.01 

 

In Columns 3-4 of Table 5, the same mechanism is investigated on the technology-push side 

and the results are similar to those that emerged for demand-pull policy spillovers. The efforts 

made by foreign countries in stimulating innovation in EE by investing public resources in 

specific R&D activities create a knowledge stock that can spill its positive effects over the 

national borders, fuelling the generation of new EE technologies in other countries. Also in the 

case of technology-push foreign policies, the spillover effect is confirmed singularly as well as 

when combined with the characteristics of the domestic policy mix, with a model fitting test 

(both in AIC and BIC) that again reveals the importance of considering both internal and 
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external policy effects.21 The adoption by foreign countries of systemic instruments, contrary to 

demand–pull and technology-push instruments, does not appear to have any significant effect on 

domestic innovation performance. This result is probably due to the measurement method 

adopted for the construction of this policy variable that provides only limited information on the 

actual weight of these policies in different innovation systems. Further work is certainly needed 

to better qualify the role of these instruments in shaping eco-innovation activities. 

The second channel we include in the analysis refers to the role played by the country-pair 

policy similarity in each specific policy pillar forming the mix. For this purpose, we include in the 

econometric model the indicator described in eq. (8) that is able to account for the magnitude of 

foreign policies, but also for the country-pair distance in policy efforts. According to results 

reported in Columns (1)-(3) of Table 6, we find first evidence that policy similarity between 

country pairs can play a positive role in driving innovation activities in EE technologies, though 

the statistical significance of the estimated coefficient is weak for demand-pull and technology-

push instruments and absent in the case of systemic instruments. However, when we address 

the impact of our indicators accounting for the similarity between the characteristics of 

domestic and foreign policy mixes (Column 4-6 in Table 6), the coefficient associated with the 

balance between demand-pull and technology-push instruments (measured as in eq. 9) turns 

out to be positive and significant. This result suggests that when one country adopts a policy mix 

balance in terms of demand-pull and technology push instruments which is not distant from that 

adopted by those foreign countries importing a high share of energy intensive goods from it, an 

additional positive effect on innovation activities in EE technologies is generated. On the 

contrary, such an effect is not identified when investigating the similarity between countries in 

terms of policy mix comprehensiveness. 

The analysis of the importance of foreign policies in shaping eco-innovation activities here 

provided should be considered explorative and the issue certainly deserves further 

investigation. However, our results give some indication that domestic innovation performance 

in EE technologies is influenced by public policies adopted by foreign countries and that, when 

designing a country policy mix, it could be worth taking into account the choices made in 

particular by foreign countries which are potentially significant markets for domestically 

generated technologies. In so doing, the proposed analysis enriches previous findings by 

Dechezleprêtre et al. (2015) on the cross-border diffusion of new technologies, confirming the 

usefulness of adopting country-pair policy distance measures for addressing the influence of 

                                                      
21 The bilateral correlation between the three policy domain spillover variables is very high (see Table A5a in the 
Appendix). This explains why we do not include in Table 5 a model in which policy spillovers variables are jointly 
included. The model results provide coefficient values that are similar to Columns 1-6, but the coefficient for demand-
pull policy spillover is no longer statistically robust. Since the effects of multicollinearity bias are that the estimated 
coefficient values are unstable and difficult to interpret, we have preferred not to include this model in Table 5. 
However, econometric results are available upon request from the authors. 
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policy similarity between countries on the generation of eco-innovations. 

 

Table 6 - Effect on domestic innovation due to regulatory distance and external similarity 
of the policy mix (HP3) 

 
(1) (2) (3) (4) (5) 

Stock of GERD 1.043*** 1.062*** 1.015*** 1.108*** 1.055*** 

 
(0.29) (0.29) (0.30) (0.29) (0.29) 

Dom. pol. (demand-pull) 0.326 0.383* 0.350* 0.262 0.344* 

 
(0.17) (0.15) (0.17) (0.13) (0.17) 

Dom. pol.(technology-push) 0.092** 0.078** 0.083** 0.065** 0.091** 

 
(0.03) (0.03) (0.03) (0.02) (0.03) 

Dom. pol.(systemic instr.) 0.044 0.038 0.015 0.038 0.046 

 
(0.06) (0.06) (0.06) (0.05) (0.05) 

Dom. pol. mix (balance) 0.003*** 0.004*** 0.003*** 0.002*** 0.004*** 

 
(0.00) (0.00) (0.00) (0.00) (0.00) 

Dom. pol. mix (compreh.) 0.383*** 0.374*** 0.334*** 0.366*** 0.358*** 

 
(0.10) (0.09) (0.06) (0.09) (0.08) 

Dom. pol. mix (compreh.) sq. -0.138*** -0.136*** -0.126*** -0.138*** -0.134*** 

 
(0.03) (0.03) (0.02) (0.03) (0.03) 

Ext. pol. sim. (demand-pull) 0.027*     

 (0.01)     

Ext. pol. sim. (technology-push)  0.032*    

  (0.02)    

Ext. pol. sim (systemic instr.)   0.063   

   (0.06)   

Ext. pol. sim (balance)    0.059***  

    (0.01)  

Ext. pol. sim (comprehensiveness)     0.020 

     (0.04) 

No. Obs. 460 460 460 460 460 

Log-Likelihood -2500 -2500 -2500 -2500 -2500 

Chi-sq 53000 49000 51000 41000 24000 

AIC 5114 5100 5093 5014 5117 

BIC 5168 5154 5147 5067 5170 

Robust clustered standard errors in parentheses 
* p< 0.1, ** p< 0.05, *** p< 0.01 

 

5. Conclusions 

This study provides an empirical analysis of the influence of the characteristics of the policy mix 

on innovation performance in energy efficiency technologies for the residential sector in 23 

OECD countries for the period 1990-2010. With regard to the existing literature, we contribute 

by analysing the specific role played by the design of the policy mix and its characteristics in 

influencing the dynamics of innovation in EE technologies. 

According to a well-established empirical literature that analyses other clean technology 
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domains, the presented evidence shows that innovation performance in energy efficiency 

technologies is driven by both demand-pull and technology-push policy instruments. In addition, 

building on the information provided by the IEA on different policies implemented in EE across 

countries, our analysis investigates the role played by systemic instruments (including soft 

instruments) which turn out to be positive though statistically weakly significant. In this respect, 

our analysis provides a first econometric assessment of this issue in the case of EE which 

certainly needs to be complemented when more refined, quantitative information becomes 

available. 

Building on this preliminary set of results, our analysis focuses on the effects associated with 

two selected characteristics of the policy mix on innovation performance in EE technologies, 

namely policy mix balance and comprehensiveness. In order to do so, a specific effort has been 

devoted to the operationalization of these two characteristics into measurable indicators, given 

data constraints. The provided empirical evidence suggests that when the policy mix is 

characterised by a more balanced use in demand-pull and technology-push instruments, its 

positive effects on eco-innovation tend to be greater. Hence, the balance between these two 

policy pillars emerges as a key characteristic to be addressed when designing policy mix, 

reinforcing market incentives and innovation capabilities for the development of new products 

and technologies. 

Our analysis also suggests that a more comprehensive policy mix is able to enhance 

innovation activities for the generation of new EE technologies. The simultaneous 

implementation of policy instruments acting on the demand and technology sides and on the 

system as a whole appears to foster eco-innovation performance. However, the presented 

evidence highlights that the simple addition of an indiscriminate number of simultaneous policy 

instruments may reduce policy mix effectiveness. Though our analysis could not unveil the 

sources of potential conflicting effects among the examined policy instruments, an implication 

arising from our analysis is that policy coordination issues have to be addressed when designing 

a comprehensive policy mix since they may severely harm the efficacy of implemented policies. 

In this paper we also propose an investigation into the effects of foreign policies on domestic 

innovation performance in EE technologies, including an explorative analysis of the role played 

by the relations between domestic and foreign policy mixes. Our findings confirm previous 

evidence on different technological domains suggesting that policy spillover effects are 

important in shaping domestic eco-innovation activities. In particular, in line with previous 

findings on the renewables sector, we confirm the major innovation impulse provided by 

demand-pull foreign policies for the energy efficiency sector as well. Furthermore, in contrast 

with existing literature on different sectors, in the examined case we find positive and robust 

statistical evidence that technology-push policies adopted in foreign countries also help foster 
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domestic innovation activities. 

In addition, building on the idea that coordinated policies across countries may reinforce the 

ability of public policies to foster eco-innovation, we analyse the role of similarity between 

domestic and foreign policy mixes. In particular, by elaborating on the empirical measure of 

country-pair policy distance developed by Dechezleprêtre et al. (2015), we show that cross-

country similarity in demand-pull and technology-push policies positively influences domestic 

innovation performance in EE technologies. Moreover, when looking at the characteristics of the 

policy mix, cross-country similarity in the policy balance indicator is seen to be important for 

shaping eco-innovation activities in the considered sector, whereas there is no evidence of 

potential effects related to comprehensiveness when domestic and foreign policy mixes are 

compared. These results suggest that when deciding on the design of domestic policy mix, the 

decisions adopted on the same matter by other countries should be taken into account. 

The outlined empirical findings represent a step further with regard to existing studies since 

they provide new insights for the design of a policy mix that aims to foster innovation 

performance in EE technologies. Moreover, the proposed methodology could be applied to an 

analysis of other technological domains, thus leading to a possible generalization of our results 

which points to the existence of an independent effect played by the composition of the policy 

mix compared with the direct effect exerted by distinct policy instruments. 

Considering the analytical difficulties in examining the issue at stake, our investigation is not 

able to deal with some relevant elements related to policy mix analysis. In particular, the 

examined characteristics, though grounded on previous theoretical contributions, have also 

been chosen considering the availability of statistical information suitable for a quantitative 

analysis on a representative sample. Hence, further policy mix characteristics could be explored 

when other information sources become available. Moreover, in our analysis, we focus on the 

overall eco-innovation effect of policy mix composition in terms of key characteristics which is, 

however, the result of complex interactions between different instruments that could be 

addressed by future research. 

Finally, in this paper we do not study policy processes that may explain not only the evolution 

but also the impact of policy mixes, and we do not explicitly address the long-term strategic 

component of policy mix. In this respect, a proper understanding of the mechanisms linking 

policy mix design and eco-innovation performances undoubtedly requires the continuous 

integration of complementary quantitative and qualitative research efforts. 
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Appendix 

Table A1a – Patent classes by technological domains and keywords 
Main domain Sub-domain CPC Class Sub-classes Keywords 

Insulation 

Heat Saving 

E06B 3/24, 3/64, 3/66, 3/67  
E06B 3 high perform+ OR insulat+ OR low energy 
C03C 17/00, 17/36 low e 
E06B 3/67F vacuum 
E06B  aerogel 
E06B 3/20  
E06B 1/32, 3/26 thermal break 
E04B 1/74, 1/76  
E04B  

Polyurethane OR PUR OR polystyrene OR EPS OR 
XPS OR heavy gas+ OR pentane OR insulat+ 

E04B  Flax OR straw OR (sheep+ AND wool) 
E04F 15/18  
E04F  Sea shell 
E04D 11 Insulat+ 
E04D 11 Green roof 
E04D 11, 9 thatch+ 
F16L 59/14  

Water saving 
F24H  Water AND (sav+ OR recover+) 
F16K 1 Water AND (sav+ OR recover+) 
E03C 1 Water AND (sav+ OR recover+) 

Cooling reduction 

E04F 10  
C03  Glass AND (reflect+ OR sunproof OR heat resist+) 

E06B 3 Glass AND (reflect+ OR sunproof OR heat resist+) 
B32B 17 Glass AND (reflect+ OR sunproof OR heat resist+) 

High-efficiency boilers HE-boilers 

F23D 14 

Low 
F24D 1 
F24D 3, 17 

F24H, excluding 
F24H7  

Heat and cold 
distribution and CHP 

Heating system F24D 5, 7, 9, 10, 11, 13, 15, 19  
Storage heaters F24H 7  
Heat exchange F28F 21  

Cooling F25B 1, 3, 5, 6, 7, 9, 11, 13, 15, 17  
Combined heating and 
refrigeration systems F25B29   

Heat pumps F25B30   
CHP 

X11-C04   
R24H240/04 (ICO 

code)   
Ventilation Ventilation F24F 7+  

Solar energy and other 
RES 

Solar energy 
F24J 2  
H01L 31/042, 31/058  
H02N 6  

Biomass F24B  Wood+ 
Geothermal F24J 3  

Building materials 
Construction structures E04B 1 Building+ or house+ 

Materials C09K 5 Building+ or house+ 

Climate control systems 
Temperature control G05D 23/02  

Electric heating devices H05B 1  

Lighting 
Lighting 

F21S  Not vehicle, not aircraft 
F21K 2 Not vehicle, not aircraft 
H01J 61 Not vehicle, not aircraft 
F21V 7 House or home or building 

LED 
H01L 33 Light and LED 
H05B 33 Light and LED 

Source: Costantini et al. (2014a) 
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Table A1b – Patent classes by technological domains and keywords 

CPC general Class related to each appliance 
Technologies aimed 

at improving efficiency of 
home appliances 

Description 

Refrigerators 
and freezers 

F25D 

See 
http://www.cooperativepatentclassification.or
g/cpc/scheme/F/scheme-F25D.pdf 

Y02B 40/32 Motor speed control of 
compressors or fans 

Y02B 40/32 Thermal insulation 

Dish-
washers 

A47L 15/00 

See 
http://www.cooperativepatentclassification.or
g/cpc/scheme/A/scheme-A47L.pdf 

Y02B 40/42 Motor speed control of 
pumps 

Y02B 40/44 Heat recovery e.g. of 
washing water 

Washing-
machines 

D06F 

(excluding D06F31/00, D06F43/00, 
D06F47/00, D06F58/12, D06F67/04, 
D06F71/00, D06F89/00, D06F93/00, 
D06F95/00 as well as their subgroups). 
 
See 

http://www.cooperativepatentclassification.or
g/cpc/definition/D/definition-D06F.pdf 

Y02B 40/52 Motor speed control of 
drum or pumps 

Y02B 40/54 Heat recovery, e.g. of 
washing water 

Y02B 40/56 Optimization of water 
quantity 

Y02B 40/58 Solar heating 

Source: Costantini et al. (2014b) 

 

Table A2 – SITC Rev 3 CODE in COMTRADE taken for the aggregate “energy consuming 
manufacturing sectors plus building sector” 

Code Description Code Description 

201 Milling, planning and impregnation 287 Other fabricated metal products 

202 Panels and boards of wood 291 Machinery for production, use of metal products 

203 Builders' carpentry and joinery 292 Other general purpose machinery 

204 Wooden containers 295 Other special purpose machinery 

205 Other products of wood; articles of 297 Domestic appliances n. e. c. 

243 Paints, coatings, printing ink 300 Office machinery and computers 

251 Rubber products 311 Electric motors, generators and transport 

252 Plastic products 312 Electricity distribution and control 

261 Glass and glass products 313 Isolated wire and cable 

262 Ceramic goods 314 Accumulators, primary cells 

263 Ceramic tiles and flags 315 Lighting equipment 

264 Bricks, tiles and construction prod 316 Electrical equipment n. e. c. 

265 Cement, lime and plaster 321 Electronic valves and tubes, other 

266 Articles of concrete, plaster and cement 322 TV, and radio transmitters, apparatus 

267 Cutting, shaping, finishing of stone 323 TV, radio and recording apparatus 

268 Other non metallic mineral products 401 Production and distribution of electricity 

282 Tanks, reservoirs, central heating 742 Architectural and engineering activity 

283 Steam generators 

 

 

http://www.cooperativepatentclassification.org/cpc/scheme/A/scheme-A47L.pdf
http://www.cooperativepatentclassification.org/cpc/scheme/A/scheme-A47L.pdf
http://www.cooperativepatentclassification.org/cpc/definition/D/definition-D06F.pdf
http://www.cooperativepatentclassification.org/cpc/definition/D/definition-D06F.pdf
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Table A3 – Variable description and data sources 

Variable name Description Source 

Stock of GERD Stock of gross RD expenditures as in eq. (3) net of RD in EE OECD MSTI Indicators 
and IEA RD Statistics 

Total patents per cap. Number of total patents filed to the EPO per capita OECD PATSTAT, OECD 
STATS 

Dom. pol. (demand-pull) 
Energy Tax 

Ratio between the energy taxation levy on the total cost of 
energy consumption as in eq. (2) 

IEA Energy Prices and 
Taxes Statistics, IEA 
OECD Energy Balance 
Statistics 

Dom. pol. (technology-push) 
RD in EE 

Stock of public gross RD expenditures in energy efficiency 
eq. (3) 

IEA RD Statistics 

Dom. pol. (systemic instr.) Stock of those qualitative policies classified as EE systemic 
instruments as in eq. (4) (Table 1) 

IEA Energy Efficiency 
Policy online Database 

Dom. pol. mix (balance) Balance between DP and TP policies as in eq. (5) IEA Energy Prices and 
Taxes Statistics, IEA 
OECD Energy Balance 
Statistics, IEA RD 
Statistics 

Dom. pol. mix (compreh.) Stock of number of policies (Table 1) as in eq. (6) IEA Energy Efficiency 
Policy online Database 

Dom. pol. mix (compreh.) sq. Square of sum of all policies as in eq. (6) 

Ext pol. (demand-pull spill.) DP policy as in eq. (2) adopted by foreign countries 
weighted by export flows in energy intensive goods as Table 
A1a –A1b as eq. (7) 

IEA Energy Prices and 
Taxes Statistics, IEA 
OECD Energy Balance 
Statistics, IEA RD 
Statistics, IEA Energy 
Efficiency Policy online 
Database UN-
COMTRADE 

Ext pol. (technology-push spill.) TP policy as eq. (3) adopted by foreign countries weighted 
by export flows in energy intensive goods as Table A1a –
A1b as eq. (7) 

Ext pol. (systemic instr. spill.) EE compl. policy as eq. (4) adopted by foreign countries 
weighted by export flows in energy intensive goods as Table 
A1a –A1b as eq. (7) 

Ext. pol. sim. (demand-pull) Similarity between the domestic and foreign DP policy 
adopted by the other OECD countries, weighted by bilateral 
trade flows as in eq. (8) 

Ext. pol. sim. (technology-push) Similarity between the domestic and foreign TP policy 
adopted by the other OECD countries, weighted by bilateral 
trade flows as in eq. (8) 

Ext. pol. sim (systemic instr.) Similarity between the domestic and foreign EE 
complementary policies adopted by the other OECD 
countries, weighted by bilateral trade flows as in eq. (8) 

Ext. pol. sim (Balance) Coherence between the balance of the domestic policy mix 
and the balance of foreign policy by OECD trade partners as 
in eq. (9) 

Ext. pol. sim 
(Comprehensiveness) 

Coherence between the comprehensiveness of the domestic 
policy mix and that of foreign policy mixes adopted by OECD 
trade partners as in eq. (10) 

Energy consumption in 
residential sector 

Energy consumption for the three aggregated sources, 
diesel, electricity and natural gas 

IEA OECD Energy 
Balance Statistics 
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Table A4a – Dependent variable statistics 

Variable name Obs Mean Std. Dev. Min Max Var. 

Total Patents in EE 483 114.41 196.25 0 894 38,512 

No. of zeros  20      

Total Patents in EE weighted by forward 

citations 483 25,672.63 77284.29 0 510090 5,979,000 

No. of zeros  20      

Stock of Total Patents in EE 483 530.21 1026.11 0 4876.71 1,052,890 

No. of zeros 12      

 

Table A4b – Independent variables statistics 

Variable Obs Mean Std. Dev. Min Max 

Stock of GERD 483 15.03 1.72 11.57 19.06 

Total patents per cap. 483 -2.71 2.38 -8.74 2.22 

Dom. pol. (demand-pull) 483 -1.77 0.69 -3.07 -0.50 

Dom. pol. (technology-push) 483 3.95 1.94 -2.32 8.45 

Dom. pol. (systemic instr.) 483 0.91 0.95 0.00 4.34 

Dom. pol. mix (balance) 483 4.00 7.64 1.32 112.68 

Dom. pol. mix (compreh.) 483 1.16 1.06 0.00 3.91 

Dom. pol. mix (compreh.) sq. 483 2.47 3.15 0.00 15.30 

Ext pol. (demand-pull spill.) 483 14.86 1.59 11.12 17.49 

Ext pol. (technology-push spill.) 483 22.41 1.85 17.97 26.58 

Ext pol. (systemic instr. spill.) 483 18.06 2.56 0.00 22.45 

Ext. pol. sim. (reg. space demand-pull) 483 -19.14 1.73 -23.56 -14.70 

Ext. pol. sim. (reg. space technology-push) 483 -15.00 1.78 -21.40 -10.69 

Ext. pol. sim (reg. space systemic instr.) 483 15.64 1.92 9.93 19.52 

Ext. pol. sim (Balance) 483 17.61 2.03 12.07 23.11 

Ext. pol. sim (Comprehensiveness) 483 15.71 1.90 10.24 20.20 
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Table A5a – Correlation matrix (values) 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) 

(2) 0.68               

(3) -0.09 0.02 
        

     

(4) 0.79 0.63 0.04 
       

     

(5) 0.46 0.25 -0.19 0.47 
      

     

(6) 0.20 0.15 -0.33 0.27 0.12 
     

     

(7) 0.45 0.26 -0.08 0.41 0.65 0.22 
    

     

(8) 0.51 0.24 -0.18 0.46 0.68 0.30 0.94 
   

     

(9) 0.83 0.68 0.03 0.64 0.28 0.12 0.18 0.24 
  

     

(10) 0.89 0.68 -0.16 0.67 0.40 0.22 0.40 0.45 0.83 
 

     

(11) 0.58 0.53 -0.05 0.44 0.42 0.16 0.54 0.52 0.54 0.77      

(12) -0.77 -0.58 0.17 -0.51 -0.30 -0.12 -0.15 -0.23 -0.80 -0.79 -0.49     

(13) -0.65 -0.63 -0.09 -0.45 -0.05 -0.04 -0.06 -0.11 -0.85 -0.63 -0.41 0.65    

(14) 0.75 0.70 -0.03 0.59 0.47 0.16 0.39 0.38 0.85 0.82 0.71 -0.71 -0.68   

(15) 0.74 0.50 -0.06 0.68 0.40 0.08 0.23 0.30 0.76 0.79 0.56 -0.67 -0.55 0.69  

(16) 0.81 0.68 0.00 0.63 0.42 0.12 0.47 0.45 0.82 0.85 0.70 -0.71 -0.67 0.89 0.70 

 

Table A5b – Correlation matrix (labels) 

Code Full label 

(1) Stock of GERD 

(2) Total patents per cap. 

(3) Dom. pol. (demand-pull) 

(4) Dom. pol. (technology-push) 

(5) Dom. pol. (systemic instr.) 

(6) Dom. pol. mix (balance) 

(7) Dom. pol. mix (compreh.) 

(8) Dom. pol. mix (compreh.) sq. 

(9) Ext pol. (demand-pull spill.) 

(10) Ext pol. (technology-push spill.) 

(11) Ext pol. (systemic instr. spill.) 

(12) Ext. pol. sim. (reg. space demand-pull) 

(13) Ext. pol. sim. (reg. space technology-push) 

(14) Ext. pol. sim (reg. space systemic instr.) 

(15) Ext. pol. sim (Balance) 

(16) Ext. pol. sim (Comprehensiveness) 
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Table A6 – Poisson panel fixed-effect estimator applied to Table 2 with forward citation-

weighted patent count dependent variable 

 
(1) (2) (3) (4) (5) (6) 

Stock of GERD 0.033 
 

-0.879 0.517 -0.899 -0.652 

 (1.35) 
 

(1.10) (0.61) (1.61) (1.29) 

Total patents per cap. 
 

2.113*** 
  

 
 

 
 

(0.34) 
  

 
 

Dom. pol. (demand-pull) 
  

3.311*** 
 

 2.594*** 

 
  

(0.75) 
 

 (0.67) 

Dom. pol.(technology-push) 
   

0.469***  0.174* 

    (0.05)  (0.08) 

Dom. pol.(systemic instr.) 
   

 0.392*** 0.059 

 
   

 (0.10) (0.15) 

No. Obs. 460 460 460 460 460 460 

Log-Likelihood -1900000 -1300000 -1200000 -1500000 -1700000 -1200000 

Chi-sq 4315 1608 7188 2631 4129 14000 

AIC 3800000 2600000 2500000 2900000 3500000 2400000 

BIC 3800000 2600000 2500000 2900000 3500000 2400000 

Robust clustered standard errors in parentheses 
* p< 0.1, ** p< 0.05, *** p< 0.01 

 

Table A7 – Poisson panel fixed-effect estimator applied to Table 2 with total patent stock 

dependent variable 

 
(1) (2) (3) (4) (5) (6) 

Stock of GERD 1.817*** 
 

1.578*** 1.641*** -0.899 1.011*** 

 (0.34) 
 

(0.27) (0.28) (1.61) (0.29) 

Total patents per cap. 
 

1.392*** 
  

 
 

 
 

(0.17) 
  

 
 

Dom. pol. (demand-pull) 
  

1.114*** 
 

 0.721*** 

 
  

(0.25) 
 

 (0.14) 

Dom. pol.(technology-push) 
   

0.199***  0.103*** 

    (0.06)  (0.02) 

Dom. pol.(systemic instr.)     0.392*** 0.270*** 

     (0.10) (0.07) 

No. Obs. 460 460 460 460 460 460 

Log-Likelihood -11000 -6000 -8800 -9700 -1700000 -7000 

Chi-sq 291 506 826 1043 4129 18000 

AIC 22000 12000 18000 19000 3500000 14000 

BIC 22000 12000 18000 19000 3500000 14000 

Robust clustered standard errors in parentheses 
* p< 0.1, ** p< 0.05, *** p< 0.01 
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Table A8 – IV POISSON GMM estimator applied to models reported in Table 2 

 
(1) (2) (3) (4) (5) (6) 

Stock of GERD 1.366*** 
 

1.222*** 1.260*** 1.170*** 1.127*** 

 (0.15) 
 

(0.14) (0.14) (0.17) (0.17) 

Total patents per cap. 
 

0.861*** 
  

 
 

 
 

(0.08) 
  

 
 

Dom. pol. (demand-pull) 
  

0.864*** 
 

 0.723*** 

 
  

(0.15) 
 

 (0.14) 

Dom. pol.(technology-push) 
   

0.135***  0.064* 

    (0.03)  (0.03) 

Dom. pol.(systemic instr.)     0.116 0.039 

     (0.07) (0.07) 

No. Obs. 437 437 437 437 437 437 

Robust clustered standard errors in parentheses 
* p< 0.1, ** p< 0.05, *** p< 0.01 
 


